早教吧作业答案频道 -->数学-->
高二数学 解析几何 椭圆 双曲线 直线 高手来就是一直线L与圆X^2+Y^2+2X=0相切,切点为T(Xo,Yo),且与双曲线X^2-Y^2=1交于点A.B,T为A、B中点,求AB的直线方程.答案是 XXo+YYo+X+Xo=o 高手把办法写出来 化
题目详情
高二数学 解析几何 椭圆 双曲线 直线 高手来
就是一直线L与圆X^2+Y^2+2X=0相切,切点为T(Xo,Yo),且与双曲线X^2-Y^2=1交于点A.B,T为A、B中点,求AB的直线方程.
答案是 XXo+YYo+X+Xo=o 高手把办法写出来 化简什么的我都可以自己弄
最好可以写明白点 小弟愚钝
就是一直线L与圆X^2+Y^2+2X=0相切,切点为T(Xo,Yo),且与双曲线X^2-Y^2=1交于点A.B,T为A、B中点,求AB的直线方程.
答案是 XXo+YYo+X+Xo=o 高手把办法写出来 化简什么的我都可以自己弄
最好可以写明白点 小弟愚钝
▼优质解答
答案和解析
这的确是一道正规的解析几何题
是完美的几何与解析的结合
只凭代数去解会昏天黑地
既然T(X0,Y0)是圆O的切点,AB直线的斜率只用几何知识就解出来了
T是AB中点且在圆O上,则AB⊥OT
过T作TC⊥X轴,交X轴于C
则AB与X轴的夹角(锐角)=∠OTC
K=-(1+X0)/Y0
点斜式,就求出AB所在直线方程了
Y-Y0=-(1+X0)(X-X0)/Y0
-YY0+Y0^2=X-X0+XX0-X0^2
T(X0,Y0)在圆O上,-X0^2-Y0^2=2X0
-YY0=X-X0+XX0+2X0
XXO+YYO+X+X0=0
即为所求AB的直线方程
是完美的几何与解析的结合
只凭代数去解会昏天黑地
既然T(X0,Y0)是圆O的切点,AB直线的斜率只用几何知识就解出来了
T是AB中点且在圆O上,则AB⊥OT
过T作TC⊥X轴,交X轴于C
则AB与X轴的夹角(锐角)=∠OTC
K=-(1+X0)/Y0
点斜式,就求出AB所在直线方程了
Y-Y0=-(1+X0)(X-X0)/Y0
-YY0+Y0^2=X-X0+XX0-X0^2
T(X0,Y0)在圆O上,-X0^2-Y0^2=2X0
-YY0=X-X0+XX0+2X0
XXO+YYO+X+X0=0
即为所求AB的直线方程
看了 高二数学 解析几何 椭圆 双...的网友还看了以下:
高三解析几何双曲线离心率题过双曲线(x平方/a平方)-(y平方/b平方)=1(a》0b》0)的一个 2020-05-12 …
双曲线概念问题在学双曲线,课本上说双曲线C与Y轴没有交点.可是不太明白,如果焦点在Y轴上,那么不是 2020-05-15 …
高二数学 解析几何 椭圆 双曲线 直线 高手来就是一直线L与圆X^2+Y^2+2X=0相切,切点为 2020-05-16 …
【急求解解析几何】已知曲线c的方程为kx^2+(4-k)y^2=k+1.已知曲线c的方程为kx^2 2020-05-16 …
解析几何:双曲线、弦、轨迹方程已知双曲线x2-(y2/2)=1求过点A(2,1)的诸弦中点M的轨迹 2020-05-16 …
关于三等分点在解析几何中的运用已知双曲线x^2-y^2=1(x>0),又已知射线l1:y=x(x》 2020-07-29 …
一道我觉得很奇葩的解析几何题,已知圆C1:x^2+y^2+2x-6y=0,线段AB是该圆的一条直径 2020-08-02 …
一道解析几何题已知F1,F2为双曲线x2/5-y2/4=1的左右焦点,P(3,1)为双曲线内一点, 2020-08-02 …
双曲线离心率已知双曲线C:x^2/a^2-y^2/b^2=1的右焦点为F,过F且斜率为根号3的直线 2020-08-02 …
一道数学解析几何题焦点F1F2在x轴上的双曲线,与y=2x+3交于两点AB,(分别在左右支),F2 2020-08-02 …