早教吧作业答案频道 -->数学-->
(n+1)(n+2)/1 +(n+2)(n+3)/1 +(n+3)(n+4)/1
题目详情
(n+1)(n+2)/1 +(n+2)(n+3)/1 +(n+3)(n+4)/1
▼优质解答
答案和解析
(n+1)(n+2)/1 +(n+2)(n+3)/1 +(n+3)(n+4)/1
=(n+1)(n+2) +(n+2)(n+3) +(n+3)(n+4)
=(n+2)(n+1+n+3)+n^2+7n+12
=(n+2)(2n+4)+n^2+7n+12
=2(n+2)^2+n^2+7n+12
=2(n^2+4n+4)+n^2+7n+12
=3n^2+15n+20
=(n+1)(n+2) +(n+2)(n+3) +(n+3)(n+4)
=(n+2)(n+1+n+3)+n^2+7n+12
=(n+2)(2n+4)+n^2+7n+12
=2(n+2)^2+n^2+7n+12
=2(n^2+4n+4)+n^2+7n+12
=3n^2+15n+20
看了 (n+1)(n+2)/1 +...的网友还看了以下: