早教吧作业答案频道 -->数学-->
如图,正方形ABCD与AEFG .连接FC,取FC中点H,连接BG,BH BG与BH的数量关系是什么?证明结论如图,正方形ABCD与AEFG .连接FC,取FC中点H,连接BG,BHBG与BH的数量关系是什么?证明结论
题目详情
如图,正方形ABCD与AEFG .连接FC,取FC中点H,连接BG,BH BG与BH的数量关系是什么?证明结论
如图,正方形ABCD与AEFG .连接FC,取FC中点H,连接BG,BH
BG与BH的数量关系是什么?证明结论

如图,正方形ABCD与AEFG .连接FC,取FC中点H,连接BG,BH
BG与BH的数量关系是什么?证明结论

▼优质解答
答案和解析
啊啊啊啊啊啊啊啊还是我自己解决,服务下大众吧
连接GH,延长GH至M使MH=GH,连接CM,BM.延长GF交BC于N
易证△GHF≌△MCH
所以∠GFH=∠HCM,GF=CM
所以GF‖CM
因为四边形ABCD和四边形AEFG是正方形
所以∠AGF=∠ABC=∠EFN=90°,GF=GA,AB=BC
在四边形ABNG中
∠GAB=360°-∠AGF-∠ABC-∠GNB=180°-∠GNB
因为∠GNC=180-∠GNB
所以∠GAB=∠GNC
因为GF‖CM
所以∠MAC=∠GNC
所以∠GAB=∠MAC
在△AGB与△CMB中
AG=CM,∠GAB=∠MAC,AB=BC
△AGB≌△CMB
所以BG=BM,∠GBA=∠CBM
因为∠GBA+∠GBC=90
所以=∠CBM+∠GBC=90即∠GBM=90
所以△GBM是等腰直角三角形
因为H是GM中点
所以GH⊥BH
所以容易得出GB=根号二倍的BH
⊙﹏⊙b汗
连接GH,延长GH至M使MH=GH,连接CM,BM.延长GF交BC于N
易证△GHF≌△MCH
所以∠GFH=∠HCM,GF=CM
所以GF‖CM
因为四边形ABCD和四边形AEFG是正方形
所以∠AGF=∠ABC=∠EFN=90°,GF=GA,AB=BC
在四边形ABNG中
∠GAB=360°-∠AGF-∠ABC-∠GNB=180°-∠GNB
因为∠GNC=180-∠GNB
所以∠GAB=∠GNC
因为GF‖CM
所以∠MAC=∠GNC
所以∠GAB=∠MAC
在△AGB与△CMB中
AG=CM,∠GAB=∠MAC,AB=BC
△AGB≌△CMB
所以BG=BM,∠GBA=∠CBM
因为∠GBA+∠GBC=90
所以=∠CBM+∠GBC=90即∠GBM=90
所以△GBM是等腰直角三角形
因为H是GM中点
所以GH⊥BH
所以容易得出GB=根号二倍的BH
⊙﹏⊙b汗
看了 如图,正方形ABCD与AEF...的网友还看了以下:
证明lim(h→0)[f(x0+h)+f(x0-h)-2f(x0)]/h^2=f’’(x0)已知f 2020-05-17 …
变限积分求道问题对函数f(t+h)-f(t-h)在[-h,h]上的积分对h求导.F(h)=∫[-h 2020-05-23 …
h[f(x+1/h)-f(a)]一道关于导数的问题h[f(x+1/h)-f(a)],h趋于正无穷? 2020-06-10 …
导数计算f(x)在x=a处二阶可导,则limh→0时{[f(a+h)-f(a)]/h-f'(a)} 2020-06-10 …
变限积分[a,b]上的积分∫[f(x+h)-f(x)]dx令x+h=t,那原式=∫[a+h,b+h 2020-07-11 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
关于导数的一个问题设f(x)在x=a的某个领域内有定义,则f(x)在x=a处可导的一个充分条件是: 2020-07-23 …
一道高数题目设f(x)在x=a的某个临域内有定义,则f(x)在x=a处可导的一个充分条件是()(A 2020-07-30 …
证明题:如果y=f(x)在x0处可导,那么lim(h->0)[f(x0+h)-f(x0-h)]/2 2020-08-01 …
求导不同思路引起的不同结果习题:设f(x)的二阶导数存在,求lim[f(x+2h)-2f(x+h)+ 2020-11-03 …