早教吧作业答案频道 -->数学-->
如图,P是等边三角形ABC内一点,PC=3,PA=4,PB=5,求AB的边长
题目详情
如图,P是等边三角形ABC内一点,PC=3,PA=4,PB=5,求AB的边长


▼优质解答
答案和解析
按照楼主图形的方向,将PA沿A点逆时针旋转60°,使P点落到D点,连接PD,CD
由旋转含义知:∠PAD=60°,PA=AD
∴△PAD是等边三角形,有PD=PA=4,且∠APD=60°
等边△ABC中,∠BAC=60°,AC=AB
∴∠BAC=∠PAD
而∠BAP=∠BAC-∠PAC
∠CAD=∠PAD-∠PAC
∴∠BAP=∠CAD
于是,在△BAP和△CAD中:
AB=AC,∠BAP=∠CAD,PA=AD
∴△BAP≌△CAD
∴CD=PB=5
在△PCD中,三边PD=4,CD=5,PC=3
很容易得出:CD^=PD^+PC^
由勾股定理逆定理可得出:
∠CPD=90°
∴∠APC=∠CPD+∠APD=90°+60°=150°
于是,在△APC中,已知两边PA=4,PC=3,以及两边夹角∠APC=150°,可根据余弦定理求出AC的长:
AC^=PA^+PC^-2*PA*PC*cos∠APC
代入各个数值,可求出:
AC=√(25+12√3)
即AB=√(25+12√3)
在这里,我不知道楼主是否已学余弦定理,如果没学的话,可通过作辅助线,在已知PA,PC,∠APC的情况下求出AC的长:
过A作AE⊥PC交PC延长线于点E
于是∠AEP=90°
而∠APE=180°-∠APC=180°-150°=30°
在Rt△APE中,∠AEP=90°
有sin∠APE=AE/AP,cos∠APE=PE/AP
代入∠APE=30°,AP=4,可求出:
AE=2,PE=2√3
∴CE=PE+PC=2√3+3
在Rt△AEC中,运用勾股定理可得:
AC^=AE^+CE^
代入AE=2,CE=2√3+3
可求出:
AC=√(25+12√3)
由旋转含义知:∠PAD=60°,PA=AD
∴△PAD是等边三角形,有PD=PA=4,且∠APD=60°
等边△ABC中,∠BAC=60°,AC=AB
∴∠BAC=∠PAD
而∠BAP=∠BAC-∠PAC
∠CAD=∠PAD-∠PAC
∴∠BAP=∠CAD
于是,在△BAP和△CAD中:
AB=AC,∠BAP=∠CAD,PA=AD
∴△BAP≌△CAD
∴CD=PB=5
在△PCD中,三边PD=4,CD=5,PC=3
很容易得出:CD^=PD^+PC^
由勾股定理逆定理可得出:
∠CPD=90°
∴∠APC=∠CPD+∠APD=90°+60°=150°
于是,在△APC中,已知两边PA=4,PC=3,以及两边夹角∠APC=150°,可根据余弦定理求出AC的长:
AC^=PA^+PC^-2*PA*PC*cos∠APC
代入各个数值,可求出:
AC=√(25+12√3)
即AB=√(25+12√3)
在这里,我不知道楼主是否已学余弦定理,如果没学的话,可通过作辅助线,在已知PA,PC,∠APC的情况下求出AC的长:
过A作AE⊥PC交PC延长线于点E
于是∠AEP=90°
而∠APE=180°-∠APC=180°-150°=30°
在Rt△APE中,∠AEP=90°
有sin∠APE=AE/AP,cos∠APE=PE/AP
代入∠APE=30°,AP=4,可求出:
AE=2,PE=2√3
∴CE=PE+PC=2√3+3
在Rt△AEC中,运用勾股定理可得:
AC^=AE^+CE^
代入AE=2,CE=2√3+3
可求出:
AC=√(25+12√3)
看了 如图,P是等边三角形ABC内...的网友还看了以下:
在平面直角坐标系中A(-2,3)B(-4,-2),在y轴上确定一点P使PA+PB最小,求P点坐标 2020-05-16 …
一道向量的数学题已知A(2,3),B(4,-3),点P满足向量AP=3/2向量PB且P在线段AB的 2020-05-16 …
A:-3,B:4若点C对应的数为-1,在数轴上A点的左侧是否存在一点P,是PA+PB=3PC?若存 2020-06-06 …
已知A(2,3)B(4,1)两点,直线l:x+3y-2=0:(1)在直线l求一点p已知A(2,3) 2020-07-13 …
数学填空在直角坐标系中,A(2,3),B(1,0),P是Y轴上一动点.在直角坐标系中,A(2,3) 2020-07-13 …
1.已知点A(2,3),B(4,5)在x轴上是否存在点P使|PA-PB|的值最小,若存在,请求出点 2020-07-26 …
平面直角坐标系中有两点A(1,3),B(4,1),P是x轴上的一个动点,当P点坐标是时,PA+PB 2020-08-02 …
1.求线段A、B的中点坐标:A(2,1),B(4,3)2.已知向量OA=(2,3),OB=(6,- 2020-08-02 …
计算机二级27.以下说明语句中,没有语法错误的是。A.inta,*pa=&a,*pb=*pa;B.i 2021-01-01 …
三点共线问题若三点A(2,2),B(a,0),C(0,b),(ab不等于0),则(1/a)+(1/b 2021-02-03 …