早教吧作业答案频道 -->数学-->
化简[2cos^4(x)-2cos²x+1/2]/[2tan(π/4-x)·sin²(π/4+x)]
题目详情
化简[2cos^4(x)-2cos²x+1/2]/[2tan(π/4-x)·sin²(π/4+x)]
▼优质解答
答案和解析
[2cos^4(x)-2cos²x+1/2]/[2tan(π/4-x)·sin²(π/4+x)]
=1/2*[4cos^4(x)-4cos²x+1]/{2tan[(π/2-π/4)-x]·sin²(π/4+x)}
=1/2*[2cos²x-1]²]/{2tan[π/2-(π/4+x)]·sin²(π/4+x)}
=1/2*[2cos²x-1]²]/{2cot(π/4+x)·sin²(π/4+x)}
=1/2*[2cos²x-1]²]/{2cos(π/4+x)·sin(π/4+x)}
=1/2*(cos2x)²/sin[2(π/4+x)]
=1/2*(cos2x)²/sin[π/2+2x]
=1/2*(cos2x)²/(cos2x)
=1/2*cos2x
=1/2*[4cos^4(x)-4cos²x+1]/{2tan[(π/2-π/4)-x]·sin²(π/4+x)}
=1/2*[2cos²x-1]²]/{2tan[π/2-(π/4+x)]·sin²(π/4+x)}
=1/2*[2cos²x-1]²]/{2cot(π/4+x)·sin²(π/4+x)}
=1/2*[2cos²x-1]²]/{2cos(π/4+x)·sin(π/4+x)}
=1/2*(cos2x)²/sin[2(π/4+x)]
=1/2*(cos2x)²/sin[π/2+2x]
=1/2*(cos2x)²/(cos2x)
=1/2*cos2x
看了 化简[2cos^4(x)-2...的网友还看了以下: