早教吧作业答案频道 -->数学-->
已知直线l:y=x+1与曲线C:交于不同的两点A,B,O为坐标原点.(Ⅰ)若|OA|=|OB|,求证:曲线C是一个圆;(Ⅱ)若OA⊥OB,当a>b且时,求曲线C的离心率e的取值范围.
题目详情
已知直线l:y=x+1与曲线C:
交于不同的两点A,B,O为坐标原点.
(Ⅰ)若|OA|=|OB|,求证:曲线C是一个圆;
(Ⅱ)若OA⊥OB,当a>b且
时,求曲线C的离心率e的取值范围.

(Ⅰ)若|OA|=|OB|,求证:曲线C是一个圆;
(Ⅱ)若OA⊥OB,当a>b且

▼优质解答
答案和解析
【答案】分析:(Ⅰ)设直线L与曲线C的交点利用两点间的距离公式和题设等式求得x12-x22=y22-y12,把A,B代入椭圆的方程两式相减求得整理求得a和b的关系,判断出曲线的图象是圆.(Ⅱ)设直线L与曲线C的交点根据a>b判断出曲线C为椭圆,根据OA⊥OB判断出两直线的斜率之积为-1,求得y1y2=-x1x2,将y=x+1代入椭圆的方程,利用韦达定理求得x1+x2和x1x2的表达式,进而利用直线方程求得y1y2的表达式,进而建立等式求得关于a和c的方程,求得a和c的关系式,进而表示出椭圆的离心率,利用a的范围确定离心率的范围.(Ⅰ)证明:设直线L与曲线C的交点为A(x1,y1)B(x2,y2)∵|OA|=|OB|∴即:x12+y12=x22+y22∴x12-x22=y22-y12∵A,B在C上∴,∴两式相减得:∴即:a2=b2∴曲线C是一个圆(Ⅱ)设直线L与曲线C的交点为A(x1,y1)B(x2,y2),∵a>b>o∴曲线C是焦点在x轴上的椭圆∵OA⊥OB∴即:y1y2=-x1x2将y=x+1代入b2x2+a2y2-a2b2=0整理得:(b2+a2)x2+2a2+a2-a2b2=0∴,∵A,B在L上∴y1y2=(x1+1)(x2+1)=x1•x2+x2+x1+1又∵y1y2=-x1x2∴2x1x2+x2+x1+1=0∴2∴b2+a2-2b2a2=0∴a2+a2-c2-2a2(a2-c2)=0∴2a4-2a2+c2-2c2a2=0∴∴∵∴2a2-1∈[2,4]∴点评:本题主要考查了直线与圆锥曲线的综合问题,椭圆的基本性质.要求考生能对椭圆中a,b和c的关系能熟练理解和应用.
看了 已知直线l:y=x+1与曲线...的网友还看了以下:
如图,点b.e.c.f在同一条直线上,be等于cf,ab平行于de,角a等于角d,证明三角形abc 2020-04-26 …
在矩形ABCD中,已知AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD,BC于点E,F; 2020-05-16 …
几何线段证明题:已知:点C是线段AB上一点,且3AC=2AB,D是AB的中点,E是CB的中点,DE 2020-06-27 …
根据所学知识,对图中d、e两点生长素浓度的分析合理的是()A.若d点对应的浓度为a,则e点对应c点 2020-07-26 …
1.在RtA△BC中,∠C=90°.D,E分别是AB,AC的中点,AC=7,BC=4,若以C为圆心 2020-07-26 …
已知圆C:(x+1)2+y2=8,过D(1,0)且与圆C相切的动圆圆心为P,(1)求点P的轨迹E的 2020-07-26 …
已知E(2,2)是抛物线C:y方=2px上一点,经过点(2,0)的直线l与抛物线C交于A,B两点( 2020-07-26 …
已知一个矩形纸片ABCD,AB=12,BC=6,点E为DC边上的动点(点E不与点D、C重合),经过 2020-07-30 …
已知△ABC中,角C=90度,AB=9,cosA=2/3,把△ABC绕着点C旋转,使得点A落在点D, 2020-11-02 …
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点为F(c,0),(c>b).过原 2021-01-11 …