早教吧作业答案频道 -->英语-->
帮写一封ENGLISH回信,重奖原文:Hello!Thanksforyourmessagesandsorryitslate,howareyouanyway?yeswecanbeagoodfriendwhynot,heresmyemailaddressiricandelaria@yahoo.com..Godblessyou!takecareIrie这封信该如何回复才
题目详情
帮写一封ENGLISH回信,重奖
原文:
Hello!Thanks for your messages and sorry its late,how are you anyway?yes we can be a good friend why not,heres my email address iri_candelaria@yahoo.com..God bless you!
take care
Irie
这封信该如何回复才能有戏
原文:
Hello!Thanks for your messages and sorry its late,how are you anyway?yes we can be a good friend why not,heres my email address iri_candelaria@yahoo.com..God bless you!
take care
Irie
这封信该如何回复才能有戏
▼优质解答
答案和解析
Irie:
I am very delighted to recive your letter!Everything here is gong well!how are you going?yes,we will be good friends!hope to recieve your letter soon!
best wishes!
***
I am very delighted to recive your letter!Everything here is gong well!how are you going?yes,we will be good friends!hope to recieve your letter soon!
best wishes!
***
看了帮写一封ENGLISH回信,重...的网友还看了以下:
写出下列自然大调的音阶:G,D,F,降B,降E,A,E,B,降A,降D.好的奖50,快,有赏:写出 2020-05-16 …
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,求a值.∵f(x)=e^x/a+a/e^ 2020-05-17 …
高代矩阵证明(A-E)可逆及求B那位好心的师哥师姐帮帮忙,小弟感激不尽已知AB均为3阶方阵,AB- 2020-06-11 …
线性代数问题A是n阶矩阵,A2-2A+E=0得到A=E对不?还是A=E是前式的充分非必要条件?帮忙 2020-06-12 …
帮求y=xe^(kx)的导数我自己算得y=e^(kx)+xe^(kx)----y=e^(kx)[x 2020-07-20 …
已知向量a≠e,|e|=1,满足:任意t∈R.已知向量a不等于e,|e|=1,对任意t属于R,恒有 2020-07-25 …
设F包含于E为代数扩张,a∈E,证明存在F上不可约多项式f(x),使得f(a)=0书上全都是概念, 2020-08-02 …
A是三阶方阵,且|A-E|=|A+2E|=|2A+3E|=0,则|2A*-E|=麻烦哥哥姐姐帮忙看一 2020-11-02 …
各位帮我解一题九宫图用0到9的数字填进九宫图的A到IABCDEFGHI要求:A+B+C=D+E+F= 2020-11-02 …
ABCD有一位获奖,A说:我获了奖B说:我没有获奖C说:A获奖或B获奖D说:B获奖2人符合事实.问: 2021-01-13 …