早教吧作业答案频道 -->数学-->
是谁证明出了哥德巴赫猜想?肿么证明的?
题目详情
是谁证明出了哥德巴赫猜想?肿么证明的?
▼优质解答
答案和解析
哥德巴赫猜想(Goldbach Conjecture)
世界近代三大数学难题之一.哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士.1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和.如6=3+3,12=5+7等等.
公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和.
(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和.
这就是着名的哥德巴赫猜想.欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明.叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意.从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等.有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立.但验格的数学证明尚待数学家的努力.
从此,这道著名的数学难题引起了世界上成千上万数学家的注意.200年过去了,没有人证明它.哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”.到了20世纪20年代,才有人开始向它靠近.1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99).这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”.
目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘s Theorem) ? “任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积.” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式.
在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t ”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了 “9 + 9 ”.
1924年,德国的拉特马赫(Rademacher)证明了“7 + 7 ”.
1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”.
1937年,意大利的蕾西(Ricei)先后证明了“5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366 ”.
1938年,苏联的布赫 夕太勃(Byxwrao)证明了“5 + 5 ”.
1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”.
1948年,匈牙利的瑞尼(Renyi)证明了“1 + c ”,其中c是一很大的自然 数.
1956年,中国的王元证明了 “3 + 4 ”.
1957年,中国的王元先后证明了 “3 + 3 ”和 “2 + 3 ”.
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”, 中国的王元证明了“1 + 4 ”.
1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了“1 + 3 ”.
1966年,中国的陈景润证明了 “1 + 2 ”.参考资料:http://zhidao.baidu.com/question/4486545.html
世界近代三大数学难题之一.哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士.1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和.如6=3+3,12=5+7等等.
公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和.
(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和.
这就是着名的哥德巴赫猜想.欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明.叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意.从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等.有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立.但验格的数学证明尚待数学家的努力.
从此,这道著名的数学难题引起了世界上成千上万数学家的注意.200年过去了,没有人证明它.哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”.到了20世纪20年代,才有人开始向它靠近.1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99).这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”.
目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘s Theorem) ? “任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积.” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式.
在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t ”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了 “9 + 9 ”.
1924年,德国的拉特马赫(Rademacher)证明了“7 + 7 ”.
1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”.
1937年,意大利的蕾西(Ricei)先后证明了“5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366 ”.
1938年,苏联的布赫 夕太勃(Byxwrao)证明了“5 + 5 ”.
1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”.
1948年,匈牙利的瑞尼(Renyi)证明了“1 + c ”,其中c是一很大的自然 数.
1956年,中国的王元证明了 “3 + 4 ”.
1957年,中国的王元先后证明了 “3 + 3 ”和 “2 + 3 ”.
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”, 中国的王元证明了“1 + 4 ”.
1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了“1 + 3 ”.
1966年,中国的陈景润证明了 “1 + 2 ”.参考资料:http://zhidao.baidu.com/question/4486545.html
看了是谁证明出了哥德巴赫猜想?肿么...的网友还看了以下:
某校准备邀请一学者作报告,下列适合出现在海报“内容”中的是()A.《蒙巴顿方案》出台B.巴以边界划 2020-05-16 …
在比例尺是1:6000000的地图上,量得AB两地的距离是15厘米,一辆中巴车和一辆大巴车分别从甲 2020-05-20 …
歌德巴赫的心思你别猜!昨天我去首都图书馆终于弄明白了什么是歌德巴赫猜想,以下是我的结论:1.歌德巴 2020-06-09 …
什么是“巴学园”丛书啊?那《安琪拉的灰烬》属于儿童文学吗? 2020-06-12 …
什么是巴人文化、土司文化? 2020-06-12 …
什么是巴基小兔子?能给个图吗?是碳的同素异形体,有一对兔子耳朵 2020-06-12 …
翻译:人的面孔要比人的嘴巴说出来的东西更多,更有趣,因为嘴巴说出的只是人的思想,而面孔说出的是思叔 2020-06-23 …
1.什么是巴申定律?在何种情况下气体放电不遵循巴申定 2020-06-28 …
下里巴人是什么意思什么是下里?什么是巴人 2020-07-10 …
什么是多线染色体,什么是巴尔体 2020-10-30 …