早教吧作业答案频道 -->数学-->
能用正六边形铺满地面的理由是
题目详情
能用正六边形铺满地面的理由是__________
▼优质解答
答案和解析
能!六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度.用3个正四边形就可以铺满地面.
在生活中遇到了许多的问题,其实有很大一部分都和数学有关系.
这给我们创造了众多的自主探索的好机会,使我们的聪明才智得到发挥.
平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方都会看到瓷砖.他们通常都是有不同的形状和颜色.其实,这里面就有数学问题,“瓷砖中的数学”.
在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙.这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢?换一些其他的形状行不行?为了解决这些问题,我们得探究一下其中的道理,研究一下多边形的有关概念,性质.
例如,三角形.三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形.通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度.用6个正三角形就可以铺满地面.
再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度.用4个正四边形就可以铺满地面.
正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度.它不能铺满地面.
六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度.用3个正四边形就可以铺满地面.
七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度.它不能铺满地面.
……
由此,我们得出了.n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度.若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面.
我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面.
例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形……
现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的.
瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢?
生活中,数学无处不在.
在生活中遇到了许多的问题,其实有很大一部分都和数学有关系.
这给我们创造了众多的自主探索的好机会,使我们的聪明才智得到发挥.
平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方都会看到瓷砖.他们通常都是有不同的形状和颜色.其实,这里面就有数学问题,“瓷砖中的数学”.
在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙.这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢?换一些其他的形状行不行?为了解决这些问题,我们得探究一下其中的道理,研究一下多边形的有关概念,性质.
例如,三角形.三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形.通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度.用6个正三角形就可以铺满地面.
再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度.用4个正四边形就可以铺满地面.
正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度.它不能铺满地面.
六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度.用3个正四边形就可以铺满地面.
七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度.它不能铺满地面.
……
由此,我们得出了.n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度.若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面.
我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面.
例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形……
现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的.
瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢?
生活中,数学无处不在.
看了能用正六边形铺满地面的理由是...的网友还看了以下:
学校运动场如图所示:中间是正方形边长是50米,两边是半圆形.(1)求运动场的面积?(2)、学校准备 2020-05-22 …
正八边形能否密铺?今天考试,下面图形中,不能密铺的是()A.正八边形B.正五边形C.正三角形D.梯 2020-05-23 …
三角形的底边是形成圆锥的(),高是圆锥的() 2020-06-03 …
一个丽一个三撇是个什么字不知道是个什么字左边是个美丽的“丽”右边是形状的“形”的三撇组合起来是个什 2020-06-16 …
小兵家用边长为4分米的正方形地砖铺长方形客厅,沿着长正好铺了25块,沿着宽正好铺了10块小兵家客厅 2020-06-26 …
有多少种这样的全等多边形,可以满足铺满整个平面,而且不出现重复铺的情形?对于正多边形,已经知道只有 2020-06-26 …
(2012•贵港)如果仅用一种正多边形进行镶嵌,那么下列正多边形不能够将平面密铺的是()A.正三角 2020-07-01 …
(2006•肇庆)下列正多边形中,与正三角形同时使用,能进行密铺的是()A.正十二边形B.正十边形 2020-08-02 …
用同一种正多边形密铺地面,下列正多边形不能密铺的是()A.正三角形B.正方形C.正五边形D.正六边 2020-08-02 …
形声字左边是形旁右边是声旁 2020-12-25 …
相关搜索:能用正六边形铺满地面的理由是