早教吧作业答案频道 -->数学-->
如图1,△ABE是等腰三角形,AB=AE,∠BAE=45°,过点B作BC⊥AE于点C,在BC上截取CD=CE,连接AD、DE并延长AD交BE于点P;(1)求证:AD=BE;(2)试说明AD平分∠BAE;(3)如图2,将△CDE绕着点C旋转一
题目详情
如图1,△ABE是等腰三角形,AB=AE,∠BAE=45°,过点B作BC⊥AE于点C,在BC上截取CD=CE,连接AD、DE并延长AD交BE于点P;
(1)求证:AD=BE;
(2)试说明AD平分∠BAE;
(3)如图2,将△CDE绕着点C旋转一定的角度,那么AD与BE的位置关系是否发生变化,说明理由.

(1)求证:AD=BE;
(2)试说明AD平分∠BAE;
(3)如图2,将△CDE绕着点C旋转一定的角度,那么AD与BE的位置关系是否发生变化,说明理由.

▼优质解答
答案和解析
(1)∵BC⊥AE,∠BAE=45°,
∴∠CBA=∠CAB,
∴BC=CA,
在△BCE和△ACD中,
∴△BCE≌△ACD,
∴AD=BE.
(2)∵△BCE≌△ACD,
∴∠EBC=∠DAC,
∵∠BDP=∠ADC,
∴∠BPD=∠DCA=90°,
∵AB=AE,
∴AD平分∠BAE.
(3)AD⊥BE不发生变化.
如图2,

∵△BCE≌△ACD,
∴∠EBC=∠DAC,
∵∠BFP=∠ACF,
∴∠BPF=∠ACF=90°,
∴AD⊥BE.
∴∠CBA=∠CAB,
∴BC=CA,
在△BCE和△ACD中,
|
∴△BCE≌△ACD,
∴AD=BE.
(2)∵△BCE≌△ACD,
∴∠EBC=∠DAC,
∵∠BDP=∠ADC,
∴∠BPD=∠DCA=90°,
∵AB=AE,
∴AD平分∠BAE.
(3)AD⊥BE不发生变化.
如图2,

∵△BCE≌△ACD,
∴∠EBC=∠DAC,
∵∠BFP=∠ACF,
∴∠BPF=∠ACF=90°,
∴AD⊥BE.
看了如图1,△ABE是等腰三角形,...的网友还看了以下:
已知:inta[]={1,2,3,4,5,6,7,8,9,10,11,12},*p=a则值为3的表 2020-05-13 …
互不相容事件和互斥事件是等同的吗?书上说,如果P(AB)=0,那么事件A和B为互不相容事件.如果A 2020-05-16 …
问一个概率统计问题,已知P(A)=P(B)=P(C)=1/4,P(AC)=P(BC)=1/6,P( 2020-05-17 …
关于高中概率的基础知识P(A|B)=P(A*B)/P(B)=P(A)*P(B)/P(B)那么P(B 2020-05-22 …
下面语句中完全正确的是A.inta,*p;*p=&a;B.inta,*p,*q=&a;p=q;C. 2020-06-12 …
设A,B,C三个事件两两独立,则A,B,C相互独立的充要条件是该题的A项说A与BC独立,故P(AB 2020-06-23 …
设有如下的说明和定义struct{inta;char*s;}x,*p=&x;x.a=4;x.s=" 2020-06-26 …
概率论与统计的问题设P(A)=0.72,P(B)0.61,则A,B中至少有一个发生的概率等于,条件 2020-08-02 …
经过下列语句intj,a[10],*p;定义后,下列语句合法的是()A.p=p+2B.p=经过下列语 2020-11-06 …
概率论基础问题(因为无法输入A的逆事件符号,只好用a来表示,即a=1-A)设A,B满足P(A)=1/ 2020-11-29 …