早教吧 育儿知识 作业答案 考试题库 百科 知识分享

象棋比赛,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分,如果平局,两个选手每人各一分,今有4个同学统计了比赛中全部选手得分总数,分别是1979.1980.1984.1985.经核实确定有一位

题目详情
象棋比赛,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分,如果平局,两个选手每人各一分,今有4个同学统计了比赛中全部选手得分总数,分别是1979.1980.1984.1985.经核实确定有一位同学统计无误.试计算这次比赛中共有多少个选手参加
▼优质解答
答案和解析
推理问题..最不不可能的是1979和1985..
原因:
因为这2个是奇数..
如果A赢了..B输了..2个人总共加2分..
如果A输了..B赢了..2个人总共也加2分..
如果A和B都和棋..各加一分,总得分还是2分..
这些选手不管个人得分是奇数还是偶数,由上面我们可以看出:所有选手分数相加应该是偶数
所以不管怎么加都不可能有奇数!
那么我们来看偶数:
1980
由1980/2=990,所以共进行了990场比赛.
设参数选手为x.
下面分析:若选手1先和其他人都比赛一次,则选手1共赛了x-1场;接着选手2和除了选手1外的其他人比赛一次,则比赛了x-2场;由此类推,到最后尾三的选手,还需赛2场,到最后尾二的选手,还赛1场,到最后一名的选手,都和其他人赛了,所以比赛结束.
由上述分析可列式:
(x-1)+(x-2)+...+2+1=990,根据等差数列求和公式(不懂可参考著名数学高斯计算从1加到100的方法)得:
x^2-x-1980=0,
(x-45)(x+44)=0
x1=45,x2=44(舍去)
所以得45
看了象棋比赛,每个选手都与其他选手...的网友还看了以下: