早教吧 育儿知识 作业答案 考试题库 百科 知识分享

证明,任何数列必定有收敛的子列

题目详情
证明,任何数列必定有收敛的子列
▼优质解答
答案和解析
证明:有界数列存在收敛的子列.
【证明】聚点定理:任意有界无穷数集至少有一个聚点.
对此数列,若有无穷多个相同的项,则此以这些相同的项构成的数列的为该数列的收敛子列.
若没有无穷多个相同的项,则该数列的每一个元素作为集合S的一个元素.由聚点定理知集合s必有一个聚点.从s中找出相应的项组成的数列就为该数列的收敛子列.