(1)选修4-2:矩阵与变换已知矩阵A=33cd,若矩阵A属于特征值6的一个特征向量为a1=11,属于特征值1的一个特征向量为a2=3-2,求矩阵A.(2)选修4-4:坐标与参数方程以直角坐标系的原点为极
(1)选修4-2:矩阵与变换
已知矩阵A=,若矩阵A属于特征值6的一个特征向量为=,属于特征值1的一个特征向量为=,求矩阵A.
(2)选修4-4:坐标与参数方程
以直角坐标系的原点为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线l的极坐标方程为psin(θ-)=6,圆C的参数方程为,(θ为参数),求直线l被圆C截得的弦长.
(3)选修4-5:不等式选讲
已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5试求a的最值.
答案和解析
(1)依题意得
,即 | | |
作业帮用户
2016-11-19
举报
- 问题解析
- (1)依题意得,得到关于c,d的方程组,即可求得矩阵A;
(2)先将曲线的参数方程化成普通方程,再利用圆的几何性质,结合点到直线的距离公式即可求得直线l被圆截得的弦长. (3)首先分析题目已知a2+2b2+3c2+6d2=5,可以考虑到柯西不等式的应用,建立关于a的不等关系后,再根据不等式的解法即可.
- 名师点评
-
- 本题考点:
- 特征值与特征向量的计算;直线与圆相交的性质;简单曲线的极坐标方程;圆的参数方程;柯西不等式在函数极值中的应用.
-
- 考点点评:
- 本题主要考查了二阶矩阵、考查圆的参数方程、参数方程的概念、直线与圆相交的性质、不等式的证明问题,其中涉及到柯西不等式和基本不等式的应用问题,有一定的技巧性,需要同学们对两种不等式非常熟练,属于中档题目.

扫描下载二维码
|
|
|
小学四年级方阵应用题谢谢一个班级有41人,如果在运动会上表演要排成方阵,最少添上几个人排成什么样的 2020-05-13 …
矩阵高手进,矩阵方面的超级难题!任何一个实对称正定矩阵都可以表示成一个实对称正定矩阵的平方,即若A 2020-05-22 …
体操表演者排成每一横行和每一竖列中的人数相同的方阵,每个方阵最外一圈有16人,若四个这样的方阵恰好 2020-06-17 …
设A*,A^-1为阶方阵A的伴随阵、逆矩阵,则|A*A^-1|=设A*,A^-1为n阶方阵A的伴随 2020-06-18 …
A为三阶方阵,|A|=1/2,则|A^-1-A*|=如题,表达式叙述为“方阵A的逆矩阵减去方阵A的伴 2020-11-07 …
多思乐学联盟组织学生参加方阵列队表演,若每班60人,这个方阵至少要有4个班的同学参加;若每班70人, 2020-11-15 …
请高手帮忙做10道线性代数1:设A为n阶方阵,下列结论中不正确的是()(A)A+AT是对称阵(B)A 2020-11-18 …
多思乐学联盟组织学生参加方阵列队表演,若每班60人,这个方阵至少要有4个班的同学参加;若每班70人, 2020-12-24 …
多思乐学联盟组织学生参加方阵列队表演,若每班60人,这个方阵至少要有4个班的同学参加;若每班70人, 2020-12-24 …
多思乐学联盟组织学生参加方阵列队表演,若每班60人,这个方阵至少要有4个班的同学参加;若每班70人, 2020-12-24 …