早教吧作业答案频道 -->其他-->
的一个定点,AC⊥x轴于点M,交直线y=-x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是
题目详情
的一个定点,AC⊥x轴于点M,交直线y=-x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是________.▼优质解答
答案和解析

由题意可知,OM=
,点N在直线y=-x上,AC⊥x轴于点M,则△OMN为等腰直角三角形,ON=
OM=
×
=
.
如答图①所示,设动点P在O点(起点)时,点B的位置为B0,动点P在N点(起点)时,点B的位置为Bn,连接B0Bn.
∵AO⊥AB0,AN⊥ABn,∴∠OAC=∠B0ABn,
又∵AB0=AO•tan30°,ABn=AN•tan30°,∴AB0:AO=ABn:AN=tan30°,
∴△AB0Bn∽△AON,且相似比为tan30°,
∴B0Bn=ON•tan30°=
×
=
.
现在来证明线段B0Bn就是点B运动的路径(或轨迹).
如答图②所示,当点P运动至ON上的任一点时,设其对应的点B为Bi,连接AP,ABi,B0Bi.
∵AO⊥AB0,AP⊥ABi,∴∠OAP=∠B0ABi,
又∵AB0=AO•tan30°,ABi=AP•tan30°,∴AB0:AO=ABi:AP,
∴△AB0Bi∽△AOP,∴∠AB0Bi=∠AOP.
又∵△AB0Bn∽△AON,∴∠AB0Bn=∠AOP,
∴∠AB0Bi=∠AB0Bn,
∴点Bi在线段B0Bn上,即线段B0Bn就是点B运动的路径(或轨迹).
综上所述,点B运动的路径(或轨迹)是线段B0Bn,其长度为
.
故答案为:
.

由题意可知,OM=
,点N在直线y=-x上,AC⊥x轴于点M,则△OMN为等腰直角三角形,ON=
OM=
×
=
.如答图①所示,设动点P在O点(起点)时,点B的位置为B0,动点P在N点(起点)时,点B的位置为Bn,连接B0Bn.
∵AO⊥AB0,AN⊥ABn,∴∠OAC=∠B0ABn,
又∵AB0=AO•tan30°,ABn=AN•tan30°,∴AB0:AO=ABn:AN=tan30°,
∴△AB0Bn∽△AON,且相似比为tan30°,
∴B0Bn=ON•tan30°=
×
=
.现在来证明线段B0Bn就是点B运动的路径(或轨迹).
如答图②所示,当点P运动至ON上的任一点时,设其对应的点B为Bi,连接AP,ABi,B0Bi.

∵AO⊥AB0,AP⊥ABi,∴∠OAP=∠B0ABi,
又∵AB0=AO•tan30°,ABi=AP•tan30°,∴AB0:AO=ABi:AP,
∴△AB0Bi∽△AOP,∴∠AB0Bi=∠AOP.
又∵△AB0Bn∽△AON,∴∠AB0Bn=∠AOP,
∴∠AB0Bi=∠AB0Bn,
∴点Bi在线段B0Bn上,即线段B0Bn就是点B运动的路径(或轨迹).
综上所述,点B运动的路径(或轨迹)是线段B0Bn,其长度为
.故答案为:
.
看了的一个定点,AC⊥x轴于点M,...的网友还看了以下:
曲线C:x2-y2=1,(x≤0)上一点P(a,b)到它的一条斜率为正的渐近线的距离为它的离心率, 2020-04-11 …
假设图中圆圈为经线圈,并且为东西半球的分界线,则()A.若a、b纬度数相同,则c必定是极点B.d地 2020-04-23 …
高中数学判断对错①若点A、B、C、D共面,点A、B、C、E共面,则A、B、C、D、E共面②若直线a 2020-06-11 …
过点A(-1,m)B(m,6)的直线与直线x-2y+1=0垂直则m的值已知抛物线的顶点原点对称轴为 2020-06-15 …
如图所示,若只需灯L1发光,则需用导线只连接接线柱;若只用导线连接B、C接线柱,则灯L1、L2联; 2020-06-18 …
有a、b两个分运动,它们的合运动为c,则下列说法正确的是()A.若a、b的轨迹为直线,则c的轨迹必 2020-07-31 …
一道关于平行线的初二数学题下列说法正确的是()A.如果a平行于b,b平行于c,则a、b、c三条直线 2020-08-01 …
已知a,b是异面直线,直线c∥直线a,则c与b的位置关系是()已知a,b是异面直线,直线c∥直线a 2020-08-02 …
下面四个命题,正确的是()A.己知直线a,b⊂平面α,直线c⊂平面β,若c⊥a,c⊥b,则平面α⊥平 2020-11-02 …
在平面a内,若直线a⊥c,直线b⊥c,则a∥b;在空间,若直线a⊥c,直线b⊥c,则直线a与直线b不 2020-12-28 …