早教吧作业答案频道 -->其他-->
(2014•海南)如图,对称轴为直线x=2的抛物线经过A(-1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛
题目详情
(2014•海南)如图,对称轴为直线x=2的抛物线经过A(-1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.
(1)求此抛物线的解析式;
(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;
(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.

(1)求此抛物线的解析式;
(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;
(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.

▼优质解答
答案和解析
(1)∵对称轴为直线x=2,
∴设抛物线解析式为y=a(x-2)2+k.
将A(-1,0),C(0,5)代入得:
,解得
,
∴y=-(x-2)2+9=-x2+4x+5.
(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.
设P(x,-x2+4x+5),
如答图2,过点P作PN⊥y轴于点N,则PN=x,ON=-x2+4x+5,
∴MN=ON-OM=-x2+4x+4.

S四边形MEFP=S梯形OFPN-S△PMN-S△OME
=
(PN+OF)•ON-
PN•MN-
OM•OE
=
(x+2)(-x2+4x+5)-
x•(-x2+4x+4)-
×1×1
=-x2+
x+
=-(x-
)2+
∴当x=
时,四边形MEFP的面积有最大值为
,此时点P坐标为(
,
∴设抛物线解析式为y=a(x-2)2+k.
将A(-1,0),C(0,5)代入得:
|
|
∴y=-(x-2)2+9=-x2+4x+5.
(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.
设P(x,-x2+4x+5),
如答图2,过点P作PN⊥y轴于点N,则PN=x,ON=-x2+4x+5,
∴MN=ON-OM=-x2+4x+4.

S四边形MEFP=S梯形OFPN-S△PMN-S△OME
=
1 |
2 |
1 |
2 |
1 |
2 |
=
1 |
2 |
1 |
2 |
1 |
2 |
=-x2+
9 |
2 |
9 |
2 |
=-(x-
9 |
4 |
153 |
16 |
∴当x=
9 |
4 |
153 |
16 |
9 |
4 |
看了 (2014•海南)如图,对称...的网友还看了以下:
数学题,如图,抛物线y=(x+1)2+k与y轴交于A,B两点,与y轴交于点C(0,-3)如图,抛物 2020-05-13 …
如图,抛物线与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x如图,抛物 2020-05-15 …
如图,抛物线y=ax²+bx-3与x轴交于A,B两点,与y轴交于点C,且经过点(2,-3a),对称 2020-05-15 …
如图,在直角坐标系中,抛物线y=ax^2+bx+c(a不等于0)与x轴交于点A(-1,0),B(3 2020-05-16 …
如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在如图,抛物 2020-06-03 …
(2014•兰州)如图,抛物线y=-12x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线 2020-06-13 …
如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称 2020-07-25 …
如图1,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点A在x轴上,点C在y 2020-07-26 …
如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以这两个交点和该抛物线的顶点、对 2020-07-29 …
如图,抛物线y=-12x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点 2020-08-01 …