早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D是该抛物线的顶点.(1)求B,D两点的坐标及直线AC的解析式;(2)直线DE为这条抛物线的对称轴
题目详情
如图,在平面直角坐标系中,抛物线y=-x 2 +2x+3与x轴交于A,B两点,与y轴交于点C,点D是该抛物线的顶点.
(1)求B,D两点的坐标及直线AC的解析式;
(2)直线DE为这条抛物线的对称轴,请在直线DE上找一点M,使△ACM的周长最小,求出M点的坐标;
(3)点P是x轴上的一个动点,过P点做直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A,P,Q,C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.

(1)求B,D两点的坐标及直线AC的解析式;
(2)直线DE为这条抛物线的对称轴,请在直线DE上找一点M,使△ACM的周长最小,求出M点的坐标;
(3)点P是x轴上的一个动点,过P点做直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A,P,Q,C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
考点:
二次函数综合题
专题:
压轴题
分析:
(1)令y=0,解方程求出A、B的坐标,把函数解析式整理成顶点式形式求出顶点D的坐标,再令x=0求出点C的坐标,然后利用待定系数法求一次函数解析式求解即可;(2)根据轴对称确定最短路线问题,连接BC,与对称轴的交点即为所求的点M,然后求出直线BC的解析式,再求解即可;(3)分点P在点Q的左边和右边两种情况,根据平行四边形的对边平行且相等,从点A、C的坐标关系,用点P的坐标表示出点Q的坐标,然后把点Q的坐标代入抛物线解析式求解即可.
(1)令y=0,则-x2+2x+3=0,整理得,x2-2x-3=0,解得x1=-1,x2=3,所以,点A(-1,0),B(3,0),∵y=-x2+2x+3=-(x-1)2+4,∴顶点D的坐标为(1,4),令x=0,则y=3,所以,点C的坐标为(0,3),设直线AC的解析式为y=kx+b,则-k+b=0b=3,解得k=3b=3.所以,直线AC的解析式为y=3x+3;(2)∵A、B关于对称轴直线x=1对称轴,∴直线BC与对称轴的交点即为直线DE上使△ACM的周长最小的点,设直线BC的解析式为y=mx+n,则3m+n=0n=3,解得m=-1n=3,所以,直线BC的解析式为y=-x+3,当x=1时,y=-1+3=2,所以,点M的坐标为(1,2);(3)∵直线l∥AC,∴PQ∥AC且PQ=AC,∵A(-1,0),C(0,3),∴设点P的坐标为(x,0),则①若点Q在x轴上方,则点Q的坐标为(x+1,3),此时,-(x+1)2+2(x+1)+3=3,解得x1=-1(舍去),x2=1,所以,点Q的坐标为(2,3),②若点Q在x轴下方,则点Q的坐标为(x-1,-3),此时,-(x-1)2+2(x-1)+3=-3,整理得,x2-4x-3=0,解得x1=2+7,x2=2-7,所以,点Q的坐标为(1+7,-3)或(1-7,-3),综上所述,点Q的坐标为(2,3)或(1+7,-3)或(1-7,-3).
点评:
本题是二次函数综合题型,主要考查了抛物线与x轴的交点问题,待定系数法求二次函数解析式,轴对称确定最短路线问题,平行四边形的对边平行且相等的性质,(2)确定出点M的位置是解题的关键,(3)难点在于分情况讨论.
考点:
二次函数综合题
专题:
压轴题
分析:
(1)令y=0,解方程求出A、B的坐标,把函数解析式整理成顶点式形式求出顶点D的坐标,再令x=0求出点C的坐标,然后利用待定系数法求一次函数解析式求解即可;(2)根据轴对称确定最短路线问题,连接BC,与对称轴的交点即为所求的点M,然后求出直线BC的解析式,再求解即可;(3)分点P在点Q的左边和右边两种情况,根据平行四边形的对边平行且相等,从点A、C的坐标关系,用点P的坐标表示出点Q的坐标,然后把点Q的坐标代入抛物线解析式求解即可.
(1)令y=0,则-x2+2x+3=0,整理得,x2-2x-3=0,解得x1=-1,x2=3,所以,点A(-1,0),B(3,0),∵y=-x2+2x+3=-(x-1)2+4,∴顶点D的坐标为(1,4),令x=0,则y=3,所以,点C的坐标为(0,3),设直线AC的解析式为y=kx+b,则-k+b=0b=3,解得k=3b=3.所以,直线AC的解析式为y=3x+3;(2)∵A、B关于对称轴直线x=1对称轴,∴直线BC与对称轴的交点即为直线DE上使△ACM的周长最小的点,设直线BC的解析式为y=mx+n,则3m+n=0n=3,解得m=-1n=3,所以,直线BC的解析式为y=-x+3,当x=1时,y=-1+3=2,所以,点M的坐标为(1,2);(3)∵直线l∥AC,∴PQ∥AC且PQ=AC,∵A(-1,0),C(0,3),∴设点P的坐标为(x,0),则①若点Q在x轴上方,则点Q的坐标为(x+1,3),此时,-(x+1)2+2(x+1)+3=3,解得x1=-1(舍去),x2=1,所以,点Q的坐标为(2,3),②若点Q在x轴下方,则点Q的坐标为(x-1,-3),此时,-(x-1)2+2(x-1)+3=-3,整理得,x2-4x-3=0,解得x1=2+7,x2=2-7,所以,点Q的坐标为(1+7,-3)或(1-7,-3),综上所述,点Q的坐标为(2,3)或(1+7,-3)或(1-7,-3).
点评:
本题是二次函数综合题型,主要考查了抛物线与x轴的交点问题,待定系数法求二次函数解析式,轴对称确定最短路线问题,平行四边形的对边平行且相等的性质,(2)确定出点M的位置是解题的关键,(3)难点在于分情况讨论.
看了如图,在平面直角坐标系中,抛物...的网友还看了以下:
一对位似对应点与位似中心,对应线段的比.不经过位似中心的对应线段,对应图形周长的比等于. 2020-04-11 …
一个数在数轴上的对应点与它的相反数在数轴上的对应点距离1个单位长度,这个数是 2020-06-03 …
求内行人详细解释一下对刀点与工件原点的关系,举个对刀点在工件外的例子并讲解如何完成此对刀过程?对刀 2020-06-14 …
旋转的性质是对应点到旋转中心的相等;对应点与旋转中心所连线段的夹角等于;旋转前、后的图形之间的关系 2020-07-01 …
图形经过旋转,图形的每一点都绕旋转中心沿相同方向旋转了多少角度,任意一对对应点与旋转中心的连接所成 2020-07-01 …
下列说法正确的是()A.平移不改变图形的形状,而旋转则使图形的形状发生改变B.一对对应点与旋转中心 2020-07-01 …
若两个图形关于某点成中心对称,则以下说法:①这两个图形一定全等;②对称点的连线一定经过对称中心;③ 2020-07-29 …
建筑CAD方面的题目.麻烦会的解答下,多选题3、应用对齐命令Align时,可根据实际情况依次指定( 2020-07-30 …
一个图形旋转后得到的图形与原来的图形有如下的关系(1)对应角相等;(2)对应线段相等;(3)对应点 2020-08-01 …
周长最小问题的证明比如说已知两点在一条直线上有一动点求这三点组成三角形的周长最小值我知道是做一点的关 2020-12-01 …