早教吧 育儿知识 作业答案 考试题库 百科 知识分享

1.直角三角形ABC在平面a内,角BAC为90度,AB=18cm,点P在平面a外,他到平面a的距离为40cm,且PA=PB=PC求平面PBC垂直平面a2.三棱锥A-BCD的顶点A在底面BCD上的射影是底面Rt三角形BCD的斜边BD的中点O,AC=BC=1,CD=根

题目详情
1.直角三角形ABC在平面a内,角BAC为90度,AB=18cm,点P在平面a外,他到平面a的距离为40cm,且PA=PB=PC
求平面PBC垂直平面a
2.三棱锥A-BCD的顶点A在底面BCD上的射影是底面Rt三角形BCD的斜边BD的中点O,AC=BC=1,CD=根2
求AC和平面BCD所成角的大小 求点A到平面BCD的距离
▼优质解答
答案和解析
1.设P在平面α内的射影为O,则∵PA=PB=PC,∴OA=OB=OC.又∵△ABC为直角三角形,∴O必为斜边BC的中点.于是有,PO⊥平面α.而PO在平面PBC内,∴平面PBC⊥平面α.2.∵直角三角形BCD,BC=1,OD=√2,∴BD=√3.∵AO⊥平面BCD,∴平...