早教吧作业答案频道 -->其他-->
某班有n个士兵,每人各有一支枪,这些枪外形完全一样,在一次夜间紧急集合中,若每人随机的取走一支枪,问至少有一个人拿到自己的枪的概率是多少?1/1!-1/2!+1/3!-1/4!+1/5!-1/6!+……+1/n!,
题目详情
某班有n个士兵,每人各有一支枪,这些枪外形完全一样,在一次夜间紧急集合中,若每人随机的取走一支枪,问至少有一个人拿到自己的枪的概率是多少?
1/1!-1/2!+1/3!-1/4!+1/5!-1/6!+……+1/n!,
1/1!-1/2!+1/3!-1/4!+1/5!-1/6!+……+1/n!,
▼优质解答
答案和解析
这是一个经典问题, 常被称为装错信封问题.
比较稳妥的方法是用递推.
设n个人全部拿错的情况数为a(n).
易见a(1) = 0, a(2) = 1.
n个人全部拿错的情况可分为两类:
① 第n个人所拿的枪的主人刚好拿到第n把枪.
所拿到的枪的主人有n-1种可能.
余下的n-2个人则有a(n-2)种全拿错的可能.
此类情况的总数为(n-1)·a(n-2).
② 第n个人所拿的枪的主人没有拿到第n把枪.
第n个人拿到的是第k把枪, 第n把枪则由第j个人拿到, 而j ≠ k.
k有n-1种可能, 以下分析当k确定后的情况数.
考虑一个操作: 将第k把枪交给第j个人, 同时去掉第n个人和第n把枪.
这个操作建立了k确定后的情况与n-1个人全拿错的情况的一一对应.
(存在逆操作: 加入第n个人和第n把枪, 用第n把枪与第k把枪交换, 将第k把枪交给第n个人).
于是此类情况的总数为(n-1)·a(n-1).
因此a(n) = (n-1)·a(n-1)+(n-1)·a(n-2).
本题要求至少有1人拿对的概率: p(n) = 1-a(n)/n!.
即有a(n) = n!-n!·p(n).
代入递推式得n!-n!·p(n) = (n-1)·(n-1)!-(n-1)·(n-1)!·p(n-1)+(n-1)!-(n-1)!·p(n-2).
整理得n·p(n) = (n-1)·p(n-1)+p(n-2), 即有p(n)-p(n-1) = -(p(n-1)-p(n-2))/n.
又由p(1) = 1-a(1)/1! = 1, p(2) = 1-a(2)/2! = 1/2, 有p(2)-p(1) = -1/2.
可得p(n)-p(n-1) = (-1)^(n+1)/n!.
于是p(n) = 1/1!-1/2!+1/3!-...+(-1)^(n+1)/n!.
比较稳妥的方法是用递推.
设n个人全部拿错的情况数为a(n).
易见a(1) = 0, a(2) = 1.
n个人全部拿错的情况可分为两类:
① 第n个人所拿的枪的主人刚好拿到第n把枪.
所拿到的枪的主人有n-1种可能.
余下的n-2个人则有a(n-2)种全拿错的可能.
此类情况的总数为(n-1)·a(n-2).
② 第n个人所拿的枪的主人没有拿到第n把枪.
第n个人拿到的是第k把枪, 第n把枪则由第j个人拿到, 而j ≠ k.
k有n-1种可能, 以下分析当k确定后的情况数.
考虑一个操作: 将第k把枪交给第j个人, 同时去掉第n个人和第n把枪.
这个操作建立了k确定后的情况与n-1个人全拿错的情况的一一对应.
(存在逆操作: 加入第n个人和第n把枪, 用第n把枪与第k把枪交换, 将第k把枪交给第n个人).
于是此类情况的总数为(n-1)·a(n-1).
因此a(n) = (n-1)·a(n-1)+(n-1)·a(n-2).
本题要求至少有1人拿对的概率: p(n) = 1-a(n)/n!.
即有a(n) = n!-n!·p(n).
代入递推式得n!-n!·p(n) = (n-1)·(n-1)!-(n-1)·(n-1)!·p(n-1)+(n-1)!-(n-1)!·p(n-2).
整理得n·p(n) = (n-1)·p(n-1)+p(n-2), 即有p(n)-p(n-1) = -(p(n-1)-p(n-2))/n.
又由p(1) = 1-a(1)/1! = 1, p(2) = 1-a(2)/2! = 1/2, 有p(2)-p(1) = -1/2.
可得p(n)-p(n-1) = (-1)^(n+1)/n!.
于是p(n) = 1/1!-1/2!+1/3!-...+(-1)^(n+1)/n!.
看了某班有n个士兵,每人各有一支枪...的网友还看了以下:
帮帮忙·····················小王从家开车上班形式10分钟出了故障,从后备箱拿出 2020-04-09 …
甲、乙、丙、丁四人各有一个作业本混放在一起,四人每人随便拿了一本.问:(1)甲拿到自己作业本的拿法 2020-06-15 …
阅读下面长句,回答问题以中国最广大人民的最大利益为出发点的中国共产党人,相信自己的事业是完全合乎正 2020-06-20 …
”现在是共产党人向全世界公开说明自己的观点、自己的目的、自己的意图并且拿党自己的宣言来反驳关于共产 2020-07-01 …
汶川地震后,聪聪和亮亮都拿出自己积攒的零用钱为灾区捐款.聪聪拿出自己总钱数的50%,亮亮拿出自己总钱 2020-11-18 …
甲、乙、丙、丁四人各有一个作业本混放在一起,四人每人随便拿了一本.问:(1)甲拿到自己作业本的拿法有 2020-11-30 …
某班有n个士兵,每人各有一支枪,这些枪外形完全一样,在一次夜间紧急集合中,若每人随机的取走一支枪,问 2020-12-20 …
为了帮助印度洋海啸的灾民,实验小学五年级向国际救援机构捐献自己零用钱的部分积蓄,小兵拿出自己全部积蓄 2020-12-27 …
孙中山晚年曾说:“欧洲当时是为个人争自由,到了今天……万不可再用到个人身上去,要用到国家身上去。个人 2021-01-01 …
孙中山晚年曾说:“欧洲当时是为个人争自由,到了今天……万不可再用到个人身上去,要用到国家身上去。个人 2021-01-01 …