早教吧作业答案频道 -->数学-->
设A,B是数域P上两个n阶矩阵,A^n=B^n=0,但A^(n-1)不等于0,A^(n-1)不等于0.证明A与B相似.
题目详情
设A,B是数域P上两个n阶矩阵,A^n=B^n=0,但A^(n-1)不等于0,A^(n-1)不等于0.证明A与B相似.
▼优质解答
答案和解析
如果可以用Jordan标准型,那么方法很直接.
由A,B幂零,A,B都只有0特征值.特征值为0的r阶Jordan块是r次幂零的.
A^(n-1)非零,说明A有大于n-1阶的Jordan块,于是A只有一个n阶Jordan块.
B也同样,于是A,B有相同的相似标准型,二者相似.
如果不能用Jordan标准型,我们就从Jordan标准型的证明中截取一段.
A视为线性变换.
A^(n-1)不等于0故存在向量X使A^(n-1)X非零.
我们证明X,AX,A²X,...,A^(n-1)X线性无关.
设k_0*X+k_1*AX+...+k_(n-1)*A^(n-1)X=0,记为(1)式.
(1)式用A^(n-1)作用得k_0=0,于是(1)式用A^(n-2)作用得k_1=0,依次类推至k_(n-1)=0.
我们得到X,AX,A²X,...,A^(n-1)X构成一组基,而A在这组基下的矩阵就是n阶Jordan块.
对B得到同样结论,知A,B相似.
由A,B幂零,A,B都只有0特征值.特征值为0的r阶Jordan块是r次幂零的.
A^(n-1)非零,说明A有大于n-1阶的Jordan块,于是A只有一个n阶Jordan块.
B也同样,于是A,B有相同的相似标准型,二者相似.
如果不能用Jordan标准型,我们就从Jordan标准型的证明中截取一段.
A视为线性变换.
A^(n-1)不等于0故存在向量X使A^(n-1)X非零.
我们证明X,AX,A²X,...,A^(n-1)X线性无关.
设k_0*X+k_1*AX+...+k_(n-1)*A^(n-1)X=0,记为(1)式.
(1)式用A^(n-1)作用得k_0=0,于是(1)式用A^(n-2)作用得k_1=0,依次类推至k_(n-1)=0.
我们得到X,AX,A²X,...,A^(n-1)X构成一组基,而A在这组基下的矩阵就是n阶Jordan块.
对B得到同样结论,知A,B相似.
看了 设A,B是数域P上两个n阶矩...的网友还看了以下:
(1)对于,按下列要求各举一例:①Z、n、b相同而A不同。②A、n、b相同而Z不同。③A、Z、b相 2020-05-13 …
计算素数个数【题目描述】 一个数组a[0]到a[n-1]存放有n个正整数,其中2≤n≤1000.先 2020-05-16 …
对于X(左上是左下是Z右上是n右下是b)按下列要求个举一例:(1)Z,n,b相同而A不同:(2)A 2020-05-19 …
a,b互为相反数,a不等于0,n为自然数,则()Aa的n次方,b的n次方互为相反数Bb的2n次方, 2020-06-15 …
如图所示,两个相同的空心金属球M、N,M带-Q电荷,N不带电,旁边各放一个不带电的金属球P和R,M 2020-07-11 …
(n+1)a(n+1)^2-n(an)^2+an[a(n+1)]=0十字相乘后为什么会得到[(n+ 2020-07-31 …
下列结论正确的是()A.幂的乘方,指数不变,底数相乘B.幂的乘方,底数不变,指数相加C.a的m次幂 2020-08-01 …
已知递推公式An=n*A(n-1)+(n-1)!,求An可以写成其他形式吗?不用阶乘,而用关于n的 2020-08-01 …
1.甲乙相距34米,甲速:乙速=3:2,他们1小时,相遇,求甲速2.1是a:b=b:c的比例中项a 2020-08-02 …
数论+集合1.证明5个相继的正整数之积不是完全平方数设n≥3,(n-2)(n-1)n(n+1)(n+ 2020-10-31 …