早教吧作业答案频道 -->数学-->
设A,B是数域P上两个n阶矩阵,A^n=B^n=0,但A^(n-1)不等于0,A^(n-1)不等于0.证明A与B相似.
题目详情
设A,B是数域P上两个n阶矩阵,A^n=B^n=0,但A^(n-1)不等于0,A^(n-1)不等于0.证明A与B相似.
▼优质解答
答案和解析
如果可以用Jordan标准型,那么方法很直接.
由A,B幂零,A,B都只有0特征值.特征值为0的r阶Jordan块是r次幂零的.
A^(n-1)非零,说明A有大于n-1阶的Jordan块,于是A只有一个n阶Jordan块.
B也同样,于是A,B有相同的相似标准型,二者相似.
如果不能用Jordan标准型,我们就从Jordan标准型的证明中截取一段.
A视为线性变换.
A^(n-1)不等于0故存在向量X使A^(n-1)X非零.
我们证明X,AX,A²X,...,A^(n-1)X线性无关.
设k_0*X+k_1*AX+...+k_(n-1)*A^(n-1)X=0,记为(1)式.
(1)式用A^(n-1)作用得k_0=0,于是(1)式用A^(n-2)作用得k_1=0,依次类推至k_(n-1)=0.
我们得到X,AX,A²X,...,A^(n-1)X构成一组基,而A在这组基下的矩阵就是n阶Jordan块.
对B得到同样结论,知A,B相似.
由A,B幂零,A,B都只有0特征值.特征值为0的r阶Jordan块是r次幂零的.
A^(n-1)非零,说明A有大于n-1阶的Jordan块,于是A只有一个n阶Jordan块.
B也同样,于是A,B有相同的相似标准型,二者相似.
如果不能用Jordan标准型,我们就从Jordan标准型的证明中截取一段.
A视为线性变换.
A^(n-1)不等于0故存在向量X使A^(n-1)X非零.
我们证明X,AX,A²X,...,A^(n-1)X线性无关.
设k_0*X+k_1*AX+...+k_(n-1)*A^(n-1)X=0,记为(1)式.
(1)式用A^(n-1)作用得k_0=0,于是(1)式用A^(n-2)作用得k_1=0,依次类推至k_(n-1)=0.
我们得到X,AX,A²X,...,A^(n-1)X构成一组基,而A在这组基下的矩阵就是n阶Jordan块.
对B得到同样结论,知A,B相似.
看了 设A,B是数域P上两个n阶矩...的网友还看了以下:
设A,B是数域P上两个n阶矩阵,A^n=B^n=0,但A^(n-1)不等于0,A^(n-1)不等于 2020-05-14 …
称n个相同的数a相乘叫做a的n次方,记作an(n在右上角),并规定a0(0在右上角,也就是a的0次 2020-07-09 …
设函数f在[0,1]上连续,在(0,1)内可导,并且f(0)=0,f(1)=1,又设k1,k2,k 2020-07-20 …
已知圆C的圆心在直线y=-4x上,且与直线x+y-1=0相切于点P(3,-2).(Ⅰ)求圆C方程; 2020-07-25 …
如图,直线y=mx(m≠0)与双曲线y=nx(n≠0)相交于A(-1,3)、B两点,过点B作BC⊥ 2020-07-26 …
已知:m+n=0,n+p=0,m+q=0,则()A.p与q相等B.m与n互为相反数C.m与n相等D 2020-07-30 …
如图,在平面直角坐标系中,直线AB交x轴于A(6,0),交y轴于B(0,6)P(m,n)是AB上一 2020-07-30 …
(1)已知随即变量X=U+2V和Y=U-2V不相关,下列哪个正确()(A)N(0,1),N(0,1 2020-08-01 …
设集合A⊆R,如果实数x0满足:对∀r>0,总∃x∈A,使得0<|x-x0|<r,则称x0为集合A的 2020-11-01 …
不知道如何用公式表达:0+1+2+3+4+5+6+7+8一直加到n等等;且需要满足条件为:一起加的个 2020-11-20 …