早教吧作业答案频道 -->其他-->
已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD.(1)如图1,若AB=BC=AC,求证:AE=EF;(2)如图2,若AB=BC,(1)中的结论是否仍然成立?证明你的结论;(3)
题目详情
已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD.

(1)如图1,若AB=BC=AC,求证:AE=EF;
(2)如图2,若AB=BC,(1)中的结论是否仍然成立?证明你的结论;
(3)如图3,若AB=kBC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出AE与EF之间的数量关系,并证明.

(1)如图1,若AB=BC=AC,求证:AE=EF;
(2)如图2,若AB=BC,(1)中的结论是否仍然成立?证明你的结论;
(3)如图3,若AB=kBC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出AE与EF之间的数量关系,并证明.
▼优质解答
答案和解析
(1)证明:如图1,过点E作EH∥AB交AC于点H.
则∠BAC+∠AHE=180°,∠BAC=∠CHE,
∵AB=BC=AC,
∴∠BAC=∠ACB=60°,
∴∠CHE=∠ACB=∠B=60°,
∴EH=EC.
∵AD∥BC,
∴∠FCE=180°-∠B=120°,
又∵∠AHE=180°-∠BAC=120°,
∴∠AHE=∠FCE,
∵∠AOE=∠COF,∠AEF=∠ACF,
∴∠EAC=∠EFC,
∴△AEH≌△FEC,
∴AE=EF;
(2)(1)中的结论仍然成立.
证明:如图2,过点E作EH∥AB交AC于点H,则∠BAC+∠AHE=180°,∠BAC=∠CHE,
∵AB=BC,
∴∠BAC=∠ACB
∴∠CHE=∠ACB,
∴EH=EC
∵AD∥BC,
∴∠D+∠DCB=180°.
∵∠BAC=∠D,
∴∠AHE=∠DCB=∠ECF
∵∠AOE=∠COF,∠AEF=∠ACF,
∴∠EAC=∠EFC,
∴△AEH≌△FEC,
∴AE=EF;
(3)猜想:(1)中的结论仍然成立.
证明:如图3,过点E作EH∥AB交AC于点H.
由(2)可得∠EAC=∠EFC,
∵AD∥BC,∠BAC=∠D,
∴∠AHE=∠DCB=∠ECF,
∴△AEH∽△FEC,
∴AE:EF=EH:EC,
∵EH∥AB,
∴△ABC∽△HEC,
∴EH:EC=AB:BC=k,
∴AE:EF=k,
∴AE=kEF.

则∠BAC+∠AHE=180°,∠BAC=∠CHE,
∵AB=BC=AC,
∴∠BAC=∠ACB=60°,
∴∠CHE=∠ACB=∠B=60°,
∴EH=EC.
∵AD∥BC,
∴∠FCE=180°-∠B=120°,
又∵∠AHE=180°-∠BAC=120°,
∴∠AHE=∠FCE,
∵∠AOE=∠COF,∠AEF=∠ACF,
∴∠EAC=∠EFC,
∴△AEH≌△FEC,
∴AE=EF;
(2)(1)中的结论仍然成立.
证明:如图2,过点E作EH∥AB交AC于点H,则∠BAC+∠AHE=180°,∠BAC=∠CHE,
∵AB=BC,
∴∠BAC=∠ACB
∴∠CHE=∠ACB,
∴EH=EC
∵AD∥BC,
∴∠D+∠DCB=180°.
∵∠BAC=∠D,
∴∠AHE=∠DCB=∠ECF
∵∠AOE=∠COF,∠AEF=∠ACF,
∴∠EAC=∠EFC,
∴△AEH≌△FEC,
∴AE=EF;
(3)猜想:(1)中的结论仍然成立.
证明:如图3,过点E作EH∥AB交AC于点H.
由(2)可得∠EAC=∠EFC,
∵AD∥BC,∠BAC=∠D,
∴∠AHE=∠DCB=∠ECF,
∴△AEH∽△FEC,
∴AE:EF=EH:EC,
∵EH∥AB,
∴△ABC∽△HEC,
∴EH:EC=AB:BC=k,
∴AE:EF=k,
∴AE=kEF.
看了已知:在四边形ABCD中,AD...的网友还看了以下:
直角梯形ABCD中,AB‖DC,∠D=90°,AD=CD=4,∠B=45°,点E位直线DC上一点, 2020-05-16 …
(2013•恩施州)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点 2020-06-15 …
如图1所示,已知△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且B点和C点在A 2020-06-20 …
下列语句中,说法错误的是()A.点(0,0)是坐标原点B.对于坐标平面内的任一点,都有唯一的一对有 2020-08-02 …
等边三角形ABC边长是6,点D,E风别在AB,AC上,且AD=AE=2已知△ABC是边长为6的等边 2020-08-03 …
已知,如图,直线y=2x+4与x轴交于点E,与y轴交于点A,点D是直线AE在第一象限上的一点,以AD 2020-11-03 …
已知:如图1,射线OP∥AE,∠AOP的角平分线角射线AE于点B.(1)若∠A=50°,求∠ABO的 2020-11-04 …
△ABC是等边三角形,△BCD是等腰直角三角形,AE⊥直线BD于E,如图1,若点D在△ABC内求证A 2020-12-09 …
如图,AE是∠BAC的平分线,AB=AC.(1)若点D是AE上任意一点,则△ABD≌△ACD;(2) 2020-12-15 …
如图,抛物线y=-1/2(x-5/2)²+9/8与X轴相交于A、B两点,与Y轴相交于C点,过点C做C 2021-01-11 …