早教吧 育儿知识 作业答案 考试题库 百科 知识分享

24.在Rt△ABC中,∠ACB=90,AC=BC,CD⊥AB于点D,点E为AC边上一点,联结BE交CD于点F,过点E作EG⊥BE交AB于点G,(1)\x05如图1,当点E为AC中点时,线段EF与EG的数量关系是;(2)\x05如图2,当,探究线段EF与EG的数

题目详情
24.在Rt△ABC中,∠ACB=90 ,AC=BC,CD⊥AB于点D,点E为AC边上一点,联结BE交CD于点F,过点E作EG⊥BE交AB
于点G,
(1)\x05如图1,当点E为AC中点时,线段EF与EG的数量关系是 ;
(2)\x05如图2,当 ,探究线段EF与EG的数量关系并且证明;
(3)\x05如图3,当 ,线段EF与EG的数量关系是 .
▼优质解答
答案和解析
第三个问题:EG=(n+1)EF.
∵EG⊥EF、GD⊥FD,∴E、F、D、G共圆,∴∠EGF=∠EDF.······①
∵CE⊥BC、CD⊥BD,∴B、C、E、D共圆,∴∠CBE=∠EDF.······②
由①、②,得:∠EGF=∠CBE,又∠GEF=∠BCE=90°,∴△GEF∽△BCE,
∴EF/EG=CE/BC,而AC=BC=AE+CE,
∴EF/EG=CE/(AE+CE)=(CE/AE)/[1+(CE/AE)]=(1/n)/(1+1/n)=1/(n+1),
∴EG=(n+1)EF.
第一个问题:EG=2EF.
由第三个问题的结论,有:EG=(n+1)EF.
∵CE=AE,∴CE/AE=1,∴令EG=(n+1)EF中的n=1,得:EG=2EF.
第二个问题:EG=3EF.
由第三个问题的结论,有:EG=(n+1)EF.
∵CE/AE=1/2,∴令EG=(n+1)EF中的n=2,得:EG=3EF.