早教吧作业答案频道 -->数学-->
24.在Rt△ABC中,∠ACB=90,AC=BC,CD⊥AB于点D,点E为AC边上一点,联结BE交CD于点F,过点E作EG⊥BE交AB于点G,(1)\x05如图1,当点E为AC中点时,线段EF与EG的数量关系是;(2)\x05如图2,当,探究线段EF与EG的数
题目详情
24.在Rt△ABC中,∠ACB=90 ,AC=BC,CD⊥AB于点D,点E为AC边上一点,联结BE交CD于点F,过点E作EG⊥BE交AB
于点G,
(1)\x05如图1,当点E为AC中点时,线段EF与EG的数量关系是 ;
(2)\x05如图2,当 ,探究线段EF与EG的数量关系并且证明;
(3)\x05如图3,当 ,线段EF与EG的数量关系是 .
于点G,
(1)\x05如图1,当点E为AC中点时,线段EF与EG的数量关系是 ;
(2)\x05如图2,当 ,探究线段EF与EG的数量关系并且证明;
(3)\x05如图3,当 ,线段EF与EG的数量关系是 .
▼优质解答
答案和解析
第三个问题:EG=(n+1)EF.
∵EG⊥EF、GD⊥FD,∴E、F、D、G共圆,∴∠EGF=∠EDF.······①
∵CE⊥BC、CD⊥BD,∴B、C、E、D共圆,∴∠CBE=∠EDF.······②
由①、②,得:∠EGF=∠CBE,又∠GEF=∠BCE=90°,∴△GEF∽△BCE,
∴EF/EG=CE/BC,而AC=BC=AE+CE,
∴EF/EG=CE/(AE+CE)=(CE/AE)/[1+(CE/AE)]=(1/n)/(1+1/n)=1/(n+1),
∴EG=(n+1)EF.
第一个问题:EG=2EF.
由第三个问题的结论,有:EG=(n+1)EF.
∵CE=AE,∴CE/AE=1,∴令EG=(n+1)EF中的n=1,得:EG=2EF.
第二个问题:EG=3EF.
由第三个问题的结论,有:EG=(n+1)EF.
∵CE/AE=1/2,∴令EG=(n+1)EF中的n=2,得:EG=3EF.
∵EG⊥EF、GD⊥FD,∴E、F、D、G共圆,∴∠EGF=∠EDF.······①
∵CE⊥BC、CD⊥BD,∴B、C、E、D共圆,∴∠CBE=∠EDF.······②
由①、②,得:∠EGF=∠CBE,又∠GEF=∠BCE=90°,∴△GEF∽△BCE,
∴EF/EG=CE/BC,而AC=BC=AE+CE,
∴EF/EG=CE/(AE+CE)=(CE/AE)/[1+(CE/AE)]=(1/n)/(1+1/n)=1/(n+1),
∴EG=(n+1)EF.
第一个问题:EG=2EF.
由第三个问题的结论,有:EG=(n+1)EF.
∵CE=AE,∴CE/AE=1,∴令EG=(n+1)EF中的n=1,得:EG=2EF.
第二个问题:EG=3EF.
由第三个问题的结论,有:EG=(n+1)EF.
∵CE/AE=1/2,∴令EG=(n+1)EF中的n=2,得:EG=3EF.
看了24.在Rt△ABC中,∠AC...的网友还看了以下:
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
已知实数a,b满足a+b=8,ab=15,且a>b,试求a-b的值解a+b=8,ab=15(a+b 2020-05-17 …
如图正方形被一条曲线分成A、B两部分,下面()说法正确.A.如果a>b,那么A周长大于B周长B.如 2020-05-17 …
同学们植树,成活了a棵,死了b棵,成活率是()a.a/b*100%b.b/a*100%c.a同学们 2020-06-03 …
对方阵A实行初等变换得距阵B,若|A|不等于0,则A.必有|A|=|B|B.必有|A|不等于|对方 2020-06-18 …
2、已知a,b为非零向量,则下列命题中真命题的个数为A若|a|+|b|=|a+b|,则a与b方向相 2020-07-30 …
(a+b+c)^3-(b+c-a)^3-(c+a-b)^3-(a+b-c)^3=[(a+b+c)^ 2020-08-02 …
下面的等量代换怎么做1.A+B=20,B+C=12,C+A=18,ABC各多少2.A+A+A=B+ 2020-08-02 …
数学老师给学生出了一道题,计算:(2(a+b)^5-3(a+b)^4+(-a-b)^3)/(2(a+ 2020-12-09 …
数轴上点A,B所代表的数为a,b,请你计算A,B两点的距离.a=2,b=6,A,B的距离是什么;a- 2020-12-30 …