早教吧作业答案频道 -->数学-->
24.在Rt△ABC中,∠ACB=90,AC=BC,CD⊥AB于点D,点E为AC边上一点,联结BE交CD于点F,过点E作EG⊥BE交AB于点G,(1)\x05如图1,当点E为AC中点时,线段EF与EG的数量关系是;(2)\x05如图2,当,探究线段EF与EG的数
题目详情
24.在Rt△ABC中,∠ACB=90 ,AC=BC,CD⊥AB于点D,点E为AC边上一点,联结BE交CD于点F,过点E作EG⊥BE交AB
于点G,
(1)\x05如图1,当点E为AC中点时,线段EF与EG的数量关系是 ;
(2)\x05如图2,当 ,探究线段EF与EG的数量关系并且证明;
(3)\x05如图3,当 ,线段EF与EG的数量关系是 .
于点G,
(1)\x05如图1,当点E为AC中点时,线段EF与EG的数量关系是 ;
(2)\x05如图2,当 ,探究线段EF与EG的数量关系并且证明;
(3)\x05如图3,当 ,线段EF与EG的数量关系是 .
▼优质解答
答案和解析
第三个问题:EG=(n+1)EF.
∵EG⊥EF、GD⊥FD,∴E、F、D、G共圆,∴∠EGF=∠EDF.······①
∵CE⊥BC、CD⊥BD,∴B、C、E、D共圆,∴∠CBE=∠EDF.······②
由①、②,得:∠EGF=∠CBE,又∠GEF=∠BCE=90°,∴△GEF∽△BCE,
∴EF/EG=CE/BC,而AC=BC=AE+CE,
∴EF/EG=CE/(AE+CE)=(CE/AE)/[1+(CE/AE)]=(1/n)/(1+1/n)=1/(n+1),
∴EG=(n+1)EF.
第一个问题:EG=2EF.
由第三个问题的结论,有:EG=(n+1)EF.
∵CE=AE,∴CE/AE=1,∴令EG=(n+1)EF中的n=1,得:EG=2EF.
第二个问题:EG=3EF.
由第三个问题的结论,有:EG=(n+1)EF.
∵CE/AE=1/2,∴令EG=(n+1)EF中的n=2,得:EG=3EF.
∵EG⊥EF、GD⊥FD,∴E、F、D、G共圆,∴∠EGF=∠EDF.······①
∵CE⊥BC、CD⊥BD,∴B、C、E、D共圆,∴∠CBE=∠EDF.······②
由①、②,得:∠EGF=∠CBE,又∠GEF=∠BCE=90°,∴△GEF∽△BCE,
∴EF/EG=CE/BC,而AC=BC=AE+CE,
∴EF/EG=CE/(AE+CE)=(CE/AE)/[1+(CE/AE)]=(1/n)/(1+1/n)=1/(n+1),
∴EG=(n+1)EF.
第一个问题:EG=2EF.
由第三个问题的结论,有:EG=(n+1)EF.
∵CE=AE,∴CE/AE=1,∴令EG=(n+1)EF中的n=1,得:EG=2EF.
第二个问题:EG=3EF.
由第三个问题的结论,有:EG=(n+1)EF.
∵CE/AE=1/2,∴令EG=(n+1)EF中的n=2,得:EG=3EF.
看了24.在Rt△ABC中,∠AC...的网友还看了以下:
数集A满足条件若a∈A则有(1+a)/(1-a)∈A(a≠1)数集A满足条件若a∈A则有(1+a) 2020-04-05 …
设A是n阶矩阵,下列命题正确的是A)若a是AT的特征向量,那么a是A的特征向量B)若a是A*的设A 2020-05-14 …
关于向量数量积的一些结论是怎么推出来的?⑴a⊥b等价于a·b=0⑵当a与b同向时,a·b=ㄧaㄧㄧ 2020-05-14 …
已知a(a-1)+(b-a的二次方)=负7,求(2分之a的平方+b的平方)-ab的值a(a-1)+ 2020-05-15 …
分解因式(a-b-c)(a+b-c)-(b-c-a)(b+c-a)正确答案是这个:(a+b-c)( 2020-05-17 …
计算:⑴a+3分之a-2 ÷ a²+6a+9分之a²-4 ⑵a+2分之a²-4÷(a-2计算:⑴a 2020-05-17 …
(a+1)(a^2+1)(a^4+1)(a^8+1)(a^16+1)=(a-1)[(a+1)(a^ 2020-05-22 …
已知A={1,2,a},B={1,a的二次方},A∪B={1,2,a},求所有可能的a值已知A={ 2020-06-02 …
已知点A,直线a,平面α,以下表达正确的个数是①A∈a,a不包含于α→A真包含于α②A∈,a∈α→ 2020-06-12 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …