早教吧作业答案频道 -->数学-->
24.在Rt△ABC中,∠ACB=90,AC=BC,CD⊥AB于点D,点E为AC边上一点,联结BE交CD于点F,过点E作EG⊥BE交AB于点G,(1)\x05如图1,当点E为AC中点时,线段EF与EG的数量关系是;(2)\x05如图2,当,探究线段EF与EG的数
题目详情
24.在Rt△ABC中,∠ACB=90 ,AC=BC,CD⊥AB于点D,点E为AC边上一点,联结BE交CD于点F,过点E作EG⊥BE交AB
于点G,
(1)\x05如图1,当点E为AC中点时,线段EF与EG的数量关系是 ;
(2)\x05如图2,当 ,探究线段EF与EG的数量关系并且证明;
(3)\x05如图3,当 ,线段EF与EG的数量关系是 .
于点G,
(1)\x05如图1,当点E为AC中点时,线段EF与EG的数量关系是 ;
(2)\x05如图2,当 ,探究线段EF与EG的数量关系并且证明;
(3)\x05如图3,当 ,线段EF与EG的数量关系是 .
▼优质解答
答案和解析
第三个问题:EG=(n+1)EF.
∵EG⊥EF、GD⊥FD,∴E、F、D、G共圆,∴∠EGF=∠EDF.······①
∵CE⊥BC、CD⊥BD,∴B、C、E、D共圆,∴∠CBE=∠EDF.······②
由①、②,得:∠EGF=∠CBE,又∠GEF=∠BCE=90°,∴△GEF∽△BCE,
∴EF/EG=CE/BC,而AC=BC=AE+CE,
∴EF/EG=CE/(AE+CE)=(CE/AE)/[1+(CE/AE)]=(1/n)/(1+1/n)=1/(n+1),
∴EG=(n+1)EF.
第一个问题:EG=2EF.
由第三个问题的结论,有:EG=(n+1)EF.
∵CE=AE,∴CE/AE=1,∴令EG=(n+1)EF中的n=1,得:EG=2EF.
第二个问题:EG=3EF.
由第三个问题的结论,有:EG=(n+1)EF.
∵CE/AE=1/2,∴令EG=(n+1)EF中的n=2,得:EG=3EF.
∵EG⊥EF、GD⊥FD,∴E、F、D、G共圆,∴∠EGF=∠EDF.······①
∵CE⊥BC、CD⊥BD,∴B、C、E、D共圆,∴∠CBE=∠EDF.······②
由①、②,得:∠EGF=∠CBE,又∠GEF=∠BCE=90°,∴△GEF∽△BCE,
∴EF/EG=CE/BC,而AC=BC=AE+CE,
∴EF/EG=CE/(AE+CE)=(CE/AE)/[1+(CE/AE)]=(1/n)/(1+1/n)=1/(n+1),
∴EG=(n+1)EF.
第一个问题:EG=2EF.
由第三个问题的结论,有:EG=(n+1)EF.
∵CE=AE,∴CE/AE=1,∴令EG=(n+1)EF中的n=1,得:EG=2EF.
第二个问题:EG=3EF.
由第三个问题的结论,有:EG=(n+1)EF.
∵CE/AE=1/2,∴令EG=(n+1)EF中的n=2,得:EG=3EF.
看了24.在Rt△ABC中,∠AC...的网友还看了以下:
怎样求最简公分母最好有几个例题,如,通分:a²b分之c,与‐的bc³分之a²怎么找最简公分母,别来 2020-04-27 …
在水平桌面上有三个质量为m的物体ABC叠放在一起,水平推力F作用在物体B上,使三个物体一起向右运动 2020-05-13 …
以知A=B+C,B与X成正比例,C与(X-2)或正比例,当X=1时A=-1.当X=3时,A=5,求 2020-06-03 …
(1)当所有条件都具备,才有肯定的结论,这是()逻辑.A与非B或非C与D或(2)当任一条件具备,都 2020-07-05 …
如图表示某DNA分子的复制过程,①、②、③和④分别为不同的DNA链.下列与DNA复制相关的叙述,正 2020-07-16 …
已知过点A(-4,0)的动直线L与抛物线C:X平方=2PY(p>0)相交于B.C两点.当L得斜率是 2020-07-21 …
在ΔABC中,三内角A、B、C所对的边分别为a、b、c,已知内角C为钝角,且,(1)求角A的大小; 2020-07-21 …
在rt三角形abc中,∠c=90°,ac=6,bc=8,以c为圆心,r为半径画圆当r------- 2020-07-26 …
Rt△ABC中,∠ACB=90°,BC=6cm,AC8cm,CM是斜边AB的中线,CD⊥AB,以点 2020-07-26 …
已知|A|=3,|B|=2,A与B的夹角为60°,c=3A+5B,d=mA-3B.1,当m为何值时 2020-07-31 …