早教吧作业答案频道 -->数学-->
求一个积分题目设∑是圆柱面x^2+y^2=4介于z=0,z=3之间部分的外侧,则∫∫x^2dxdy是多少书上的答案是0,我算不出这个答案,还有我想问,题目中说的外侧,包括上,下两个圆型底面吗?有的题目说的是球
题目详情
求一个积分题目
设∑是圆柱面x^2+y^2=4介于z=0,z=3之间部分的外侧,则∫∫x^2dxdy是多少
书上的答案是0,我算不出这个答案,
还有我想问,题目中说的外侧,包括上,下两个圆型底面吗?
有的题目说的是球面的上侧(也有的是说球面的外侧),这些用词是否有区别啊?我想这是不是∑与Dxy的区别啊
希望可以讲得详细点,
设∑是圆柱面x^2+y^2=4介于z=0,z=3之间部分的外侧,则∫∫x^2dxdy是多少
书上的答案是0,我算不出这个答案,
还有我想问,题目中说的外侧,包括上,下两个圆型底面吗?
有的题目说的是球面的上侧(也有的是说球面的外侧),这些用词是否有区别啊?我想这是不是∑与Dxy的区别啊
希望可以讲得详细点,
▼优质解答
答案和解析
这个题不用笔来算,用嘴来算就行了.
第一步,高斯定理.被积函数在积分域里面是连续的,没有奇点.
于是,原积分=∫∫∫[(x^2)对z求偏导+0对x求偏导+0对y求偏导]dxdydz-多算出来的两个圆形底面的积分.积分区域是圆柱体.
=0-两个多出来的圆形底面的积分.
而两个多出来的圆形底面的积分的绝对值是相等的,都是∫∫x^2dxdy,积分区域就是圆心在原点以2为半径的圆,但是注意,z=3的上底方向是向上的,z=0的下底方向是向下的,于是,抵消掉.
所以,0
此题无论有没有两个底面,都是0.
以上的过程总结成一句话:如果你注意到被积函数作为某矢量场在三个方向上的法投影,而这个矢量场恰恰在你的积分区域里面没有散度,那么一切都好办了.
第一步,高斯定理.被积函数在积分域里面是连续的,没有奇点.
于是,原积分=∫∫∫[(x^2)对z求偏导+0对x求偏导+0对y求偏导]dxdydz-多算出来的两个圆形底面的积分.积分区域是圆柱体.
=0-两个多出来的圆形底面的积分.
而两个多出来的圆形底面的积分的绝对值是相等的,都是∫∫x^2dxdy,积分区域就是圆心在原点以2为半径的圆,但是注意,z=3的上底方向是向上的,z=0的下底方向是向下的,于是,抵消掉.
所以,0
此题无论有没有两个底面,都是0.
以上的过程总结成一句话:如果你注意到被积函数作为某矢量场在三个方向上的法投影,而这个矢量场恰恰在你的积分区域里面没有散度,那么一切都好办了.
看了求一个积分题目设∑是圆柱面x^...的网友还看了以下:
先有一个微分的问题..书上给微分的定义时说如果y=x则dx=x‘*德尔塔X但是后面很多地方都是直接 2020-06-03 …
已知圆C:(x-1)²+y²=4,以及圆C上一点A(1,2),P为圆C上任意一点.问:x轴上是否存 2020-06-14 …
已知椭圆x²/2+y²=1已知动直线l过点F,且与椭圆C交与A,B两点,试问X轴上是否存在定点Q, 2020-07-18 …
幂级数的问题说e^x收敛半径为-∞到+∞后来又说当x趋向于0时e^x=1+x+(x^2)/2!+. 2020-07-29 …
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为根号5/3,椭圆过定点M(2,0), 2020-07-30 …
有关高数的问题书上说,f(x)如果连续,则f(x)的变上限积分可导;如果f(x)可积(即f(x)存 2020-07-31 …
反余弦函数提问P75书上说的已知cosx=-0.7660,且X∈[0,π],求X已知符合条件的角只 2020-08-03 …
已知A(-2,3)、B(1,4),问X轴上是否存在一点P使三角形ABP的面积为21,若存在,求点P的 2020-11-04 …
关于导数的问题书上说c'=0就是常数的导数为0,但是有人说常数的导数是常数他本身,哪个对?光从公式( 2020-12-14 …
这句话有问题吗?如果语气婉转些应该说成,couldyouspeakinenglish?thanksa 2020-12-31 …