早教吧作业答案频道 -->数学-->
高中数学题,有关椭圆的已知椭圆C:y^2/a^2+x^2/b^2=1(a>b>0)的两焦点与短轴的一个端点连接构成等腰直角三角形,直线l:x-y-b=0是抛物线x^2=4y的一条切线(1)求椭圆C的方程(2)直线l交椭圆C于A,
题目详情
高中数学题,有关椭圆的
已知椭圆C:y^2/a^2+x^2/b^2=1(a>b>0)的两焦点与短轴的一个端点连接构成等腰直角三角形,直线l:x-y-b=0是抛物线x^2=4y的一条切线
(1)求椭圆C的方程
(2)直线l交椭圆C于A,B两点,若点P满足向量OP+向量OA+向量OB=向量0(O为坐标原点),判断点P是否在椭圆C上,并说明理由
急需!
已知椭圆C:y^2/a^2+x^2/b^2=1(a>b>0)的两焦点与短轴的一个端点连接构成等腰直角三角形,直线l:x-y-b=0是抛物线x^2=4y的一条切线
(1)求椭圆C的方程
(2)直线l交椭圆C于A,B两点,若点P满足向量OP+向量OA+向量OB=向量0(O为坐标原点),判断点P是否在椭圆C上,并说明理由
急需!
▼优质解答
答案和解析
两焦点与短轴的一个端点连接构成等腰直角三角形,可知 c=b
x-y-b=0是抛物线x^2=4y的一条切线,那么将y=x-b 带入 x^2=4y
可知 x^2-4x+4b=0 有唯一解,△=0→ b=1
可以直接算出A,B交点...设A(1,0)
椭圆方程 y^2/2+x^2=1 ;即 y^2+2x^2 = 2 将 y = x-1带入
得到 3x^2-2x-1 = 0 x= -1/3 或1
于是,y= -1/4,B(-1/3,-4/3)
向量OP+向量OA+向量OB=向量0 可知 P(-2/3,-4/3)
代入检验,P不在椭圆上
x-y-b=0是抛物线x^2=4y的一条切线,那么将y=x-b 带入 x^2=4y
可知 x^2-4x+4b=0 有唯一解,△=0→ b=1
可以直接算出A,B交点...设A(1,0)
椭圆方程 y^2/2+x^2=1 ;即 y^2+2x^2 = 2 将 y = x-1带入
得到 3x^2-2x-1 = 0 x= -1/3 或1
于是,y= -1/4,B(-1/3,-4/3)
向量OP+向量OA+向量OB=向量0 可知 P(-2/3,-4/3)
代入检验,P不在椭圆上
看了 高中数学题,有关椭圆的已知椭...的网友还看了以下:
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为(2√2)/3,且内切于圆x^ 2020-05-20 …
平面上两椭圆相交于一点.这点是否一定在两圆心的连线上?平面上两椭圆(轴平行于坐标轴)相交于一点.问 2020-06-04 …
已知圆,若焦点在轴上的椭圆过点,且其长轴长等于圆的直径.(1)求椭圆的方程;(2)过点作两条互相垂 2020-07-20 …
设椭圆M:(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且内切于圆x2+y2=4。 2020-07-31 …
设椭圆M:(a>b>0)的离心率与双曲线x2﹣y2=1的离心率互为倒数,且内切于圆x2+y2=4. 2020-07-31 …
椭圆x^2/a^2+y^2/b^2=1(a>b>0)的右焦点为F,离心率是1/2,过F作直线l交椭 2020-08-01 …
过椭圆焦点的直线与椭圆有两个交点,过交点有两椭圆的切线,证明以该切线的垂线为角平分线,原过焦点的直 2020-08-02 …
若椭圆E1:和椭圆E2:满足,则称这两个椭圆相似,m是相似比.(Ⅰ)求过(且与椭圆相似的椭圆的方程; 2020-10-31 …
已知圆O:x2+y2=4,若焦点在x轴上的椭圆过点P(0,-1),且其长轴长等于圆O的直径,过点P作 2020-12-01 …
双曲线离心率怎么理解不用计算公式,例如椭圆两焦点间距离和长轴长度的比值.即某一椭圆轨道与理想圆环的偏 2021-01-02 …