早教吧作业答案频道 -->数学-->
9年级上册人教版数学课外上册37页第十题在⊙O中 AB是直径 P为AB上的一点 ∠NPB=45°1.若AP=2 BP=6 求MN的长2.若MP=3 NP=5 求AB的长3.当P在AB上运动时《保持∠NPB的度数不变》 试问 PM²+PN²
题目详情
9年级上册人教版数学课外上册37页第十题
在⊙O中 AB是直径 P为AB上的一点 ∠NPB=45°
1.若AP=2 BP=6 求MN的长
2.若MP=3 NP=5 求AB的长
3.当P在AB上运动时《保持∠NPB的度数不变》 试问 PM²+PN²
---------------
AB²
的值是否变化 ?若不变,请求出其值的范围
在⊙O中 AB是直径 P为AB上的一点 ∠NPB=45°
1.若AP=2 BP=6 求MN的长
2.若MP=3 NP=5 求AB的长
3.当P在AB上运动时《保持∠NPB的度数不变》 试问 PM²+PN²
---------------
AB²
的值是否变化 ?若不变,请求出其值的范围
▼优质解答
答案和解析
1 因直径AB=AP+BP=2+6=8,所以半径OA=8/2=4,OP=OA-AP=4-2=2.又角MPB=45度,故作OH垂直MN,垂足为H,三角形OHP是等腰直角三角形.OH=HP,而OH^2+PH^2=OP^2,所以,OH=PH=OP/(根号2)=根号2.再,过圆心的垂直弦平分弦,故MH=NH,连接OM,在直角三角形OHM中,利用勾股定理,MH^2=MO^2-OH^2=4^2-(根号2)^2=14,MH=根号14,因此,MP=根号14-根号2,NP=根号14+根号2,MN=2根号14.2 若MP=3,NP=5,那么,MN=3+5=8,MH=8/2=4,PH=1.由于三角形OHP是等腰直角三角形,OH=HP=1,在直角三角形MHO中利用勾股定理,OM^2=OH^2+MH^2=1+4^2=17,所以,OM=根号17,直径AB=2根号17.
3 因MH=NH,OH=HP,OH垂直MN,那么PM^2+PN^2=(MH-HP)^2+(PH+HN)^2=(MH-HP)^2+(MH+HP)^2=2(MH^2+HP^2)=2(MH^2+HO^2)=2OM^2所以,(PM^2+PN^2)/AB^2=2OM^2/(2OM)^2=1/2.可见,P变化时,比值不变,总为1/2.
3 因MH=NH,OH=HP,OH垂直MN,那么PM^2+PN^2=(MH-HP)^2+(PH+HN)^2=(MH-HP)^2+(MH+HP)^2=2(MH^2+HP^2)=2(MH^2+HO^2)=2OM^2所以,(PM^2+PN^2)/AB^2=2OM^2/(2OM)^2=1/2.可见,P变化时,比值不变,总为1/2.
看了 9年级上册人教版数学课外上册...的网友还看了以下:
数学中一个函数P.P.于一个范围,其“P.P.的“P.P. 2020-05-16 …
求助:证明对任意素数p,存在正整数前n项和Sn及前m项和Sm(n,m为正整数),p=Sn/Sm证明 2020-05-17 …
如果对于某整数p和q,有r=p/q,实数r就称为有理数,否则称为无理数.0.25,1.333333 2020-05-22 …
一份稿件,第一天的页数与总页数的比是1比3如果第二天打印30页,就可以完成50%,这份稿件一共有多 2020-06-05 …
一本书第一次看的页数与总页数的比是1比3,如果再看15页就可以看完这本书的一半,这本书一共多少页? 2020-06-06 …
再求几道”初等数论”的详解.1.求13^2006的个位码.2.设素数P≥5,证明P^2Ξ1(mod 2020-07-07 …
在数学上,对于两个正数p和q有三种平均数,即算术平均数A、几何平均数G、调和平均数H,其中A=p+ 2020-08-03 …
已知A是数域P上的n*n矩阵,设W1={AX|X∈P^n},W2={X|X∈P^n,AX=0}证明: 2020-10-31 …
1.1,2/3,5/9,(A),7/15,4/9A1/2B3/4C2/13D3/72.自然数P满足下 2020-10-31 …
设总体X服从参数为p的(0-1)分布,X1,X2,.,Xn是取自总体X的一个样本,x1,x2,.,x 2020-12-31 …