早教吧作业答案频道 -->数学-->
已知关于x的方程x^2-2(m+1)x+m^2-2m-3=0的两个不相等的实数根中有一根为0,是否存在非正整数k,使得关于x的方程kx^2-(2k-m)x+k-m^2+5m-10=0有整数根?若存在,求k的值,若不存在,请说明理由
题目详情
已知关于x的方程x^2-2(m+1)x+m^2-2m-3=0的两个不相等的实数根中有一根为0,是否存在非正整数k,使得关于x的方程kx^2-(2k-m)x+k-m^2+5m-10=0有整数根?若存在,求k的值,若不存在,请说明理由
▼优质解答
答案和解析
已知关于x的方程x^2-2(m+1)x+m^2-2m-3=0的两个不相等的实数根中有一根为0,是否存在非正整数k,使得关于x的方程kx^2-(2k-m)x+k-m^2+5m-10=0有整数根?若存在,求k的值,若不存在,请说明理由
关于X的方程x^2-2(m+1)x+m^2-2m-3=0的两个不相等实数根中,有一个根为0.
∴把x=0代入方程解得:m1=-1,m2=3.
∴另一方程可能为:x^2-(k+1)x-k-8=0或x^2-(k-3)x-k+4=0,
设存在实数k,使关于x的方程x^2-(k-m)x-k-m^2+5m-2=0的两个实数根之差的绝对值为1,两根分别为x1,x2.
由韦达定理得:x1+x2=k+1或x1+x2=k-3;x1x2=-(k+8)或x1x2=-(k-4)
∴|x1-x2|=√[(x1+x2)^2-4x1x2]=(k+1)^2+4(k+8)]=1解得方程无实数根.
|x1-x2|=√[(x1+x2)^2-4x1x2]=∴|x1-x2|=√[[(k-3)^2+4(k-4)]=1,
解得:k1=4,k2=-2,
经检验:k2=-2不符合题意,k=4符合题意.
∴存在实数k=4使关于x的方程x^2-(k-3)x+4=0的两个实数根之差的绝对值为1.
关于X的方程x^2-2(m+1)x+m^2-2m-3=0的两个不相等实数根中,有一个根为0.
∴把x=0代入方程解得:m1=-1,m2=3.
∴另一方程可能为:x^2-(k+1)x-k-8=0或x^2-(k-3)x-k+4=0,
设存在实数k,使关于x的方程x^2-(k-m)x-k-m^2+5m-2=0的两个实数根之差的绝对值为1,两根分别为x1,x2.
由韦达定理得:x1+x2=k+1或x1+x2=k-3;x1x2=-(k+8)或x1x2=-(k-4)
∴|x1-x2|=√[(x1+x2)^2-4x1x2]=(k+1)^2+4(k+8)]=1解得方程无实数根.
|x1-x2|=√[(x1+x2)^2-4x1x2]=∴|x1-x2|=√[[(k-3)^2+4(k-4)]=1,
解得:k1=4,k2=-2,
经检验:k2=-2不符合题意,k=4符合题意.
∴存在实数k=4使关于x的方程x^2-(k-3)x+4=0的两个实数根之差的绝对值为1.
看了 已知关于x的方程x^2-2(...的网友还看了以下:
已知直线Y=(5M-3)X+2-N1)当m为何值时,Y随x的增大而减小?2)当mn为何值时,直线与y 2020-03-31 …
设集合M={-1,0,1},N={2,3,4},从M到N的映射f满足条件:对每个x∈M,都有x+f 2020-04-05 …
已知集合M={-2,1},N={1,2,3}.映射f:M→N对任意X∈M都有x+f(x)+xf(x 2020-05-13 …
设集合M={-1,0,1},N={2,3,4},从M到N的映射f满足条件:对每个x属于M,都有x+ 2020-05-15 …
设集合M={-1,0,1},N={2,3,4},从M到N的映射f满足条件:对每个x∈M,都有x+f 2020-05-15 …
设集合M={-1,0},N={1,2,3,4,5}映射f:M→N.满足条件对每个x属于M,都有x+ 2020-05-15 …
中学数学题——关于集合与映射的.(8.25)设集合M={-1,0,1},集合N={5,6,7,8, 2020-06-06 …
已知方程组2x+y=5m+6,x-2y=-17的解x、y都是负数,求m的取值范围.,求m的取值范围 2020-08-01 …
已知关于x的方程x²2(m+1)x+m²2m-3=0(1)的两个不相等的实数根中有一个根为0,是否存 2020-12-17 …
知m∈R,设p:x1和x2是方程x^2-ax+2=0的两个实数根,不等式∣m^-5m-3∣≥∣x1- 2020-12-31 …