早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,等边△ABC,G是△ABC的重心,直线AG把△ABC分成面积相等的两部分,但是不是过G点的任意一条直线都把△ABC分成面积相等的两部分?用实验或说理的方法,给予探索并得出结论.

题目详情
如图,等边△ABC,G是△ABC的重心,直线AG把△ABC分成面积相等的两部分,但是不是过G点的任意一条直线都把△ABC分成面积相等的两部分?用实验或说理的方法,给予探索并得出结论.
▼优质解答
答案和解析
不是.
理由:如图,过G作直线EF∥AB,交AC于E、BC于F,
设直线AG与BC的交点为M,过M作MN∥EF,交AC于N.
∵G是△ABC的内心,
∴BM=MC,AG=2GM.
∵GE∥MN,
AE
AN
AG
AM
2
3
,即AE=
2
3
AN.
∵BM=MC,即M是BC的中点,且MN∥EF∥AB,
∴MN是△ABC的中位线,即AN=NC.
∴AE=
2
3
AN=
2
3
NC.
设AE=2x,则AN=NC=3x,EN=x,
∴EC=NC+EN=4x,AC=AE+EC=6x.
∵EF∥AB,
∴△CMN∽△CBA,
S△CMN
S△CBA
=(
EC
AC
2=
4
9

故S△CEF:S四边形AEFB=4:5.
因此过G点的任意一条直线不是都能把△ABC分成面积相等的两部分.