早教吧作业答案频道 -->数学-->
求级数的和∑(n=0到∞)cosnx/n!
题目详情
求级数的和∑(n=0到∞)cosnx/n!
▼优质解答
答案和解析
Let a = Σ(n = 0 to ∞) cos(nx)/n!and b = Σ(n = 0 to ∞) sin(nx)/n!
a + bi = Σ(n = 0 to ∞) [cos(nx) + isin(nx)]/n!
= Σ(n = 0 to ∞) [e^(inx)]/n!
= Σ(n = 0 to ∞) [e^(ix)]^n/n!
= e^[e^(ix)]
= e^(cosx + isinx)
= e^(cosx) * e^(isinx)
= e^(cosx) * [cos(sinx) + isin(sinx)]
a = Σ(n = 0 to ∞) cos(nx)/n!= Re(a + bi) = e^(cosx) * cos(sinx)
a + bi = Σ(n = 0 to ∞) [cos(nx) + isin(nx)]/n!
= Σ(n = 0 to ∞) [e^(inx)]/n!
= Σ(n = 0 to ∞) [e^(ix)]^n/n!
= e^[e^(ix)]
= e^(cosx + isinx)
= e^(cosx) * e^(isinx)
= e^(cosx) * [cos(sinx) + isin(sinx)]
a = Σ(n = 0 to ∞) cos(nx)/n!= Re(a + bi) = e^(cosx) * cos(sinx)
看了求级数的和∑(n=0到∞)co...的网友还看了以下: