早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2012•滨州)我们知道“连接三角形两边中点的线段叫三角形的中位线”,“三角形的中位线平行于三角形的第三边,且等于第三边的一半”.类似的,我们把连接梯形两腰中点的线段叫做

题目详情
(2012•滨州)我们知道“连接三角形两边中点的线段叫三角形的中位线”,“三角形的中位线平行于三角形的第三边,且等于第三边的一半”.类似的,我们把连接梯形两腰中点的线段叫做梯形的中位线.如图,在梯形ABCD中,AD∥BC,点E,F分别是AB,CD的中点,那么EF就是梯形ABCD的中位线.通过观察、测量,猜想EF和AD、BC有怎样的位置和数量关系?并证明你的结论.
▼优质解答
答案和解析
结论为:EF∥AD∥BC,EF=
1
2
(AD+BC).理由如下:
连接AF并延长交BC于点G.
∵AD∥BC,
∴∠DAF=∠G,
在△ADF和△GCF中,
∠DAF=∠G
∠DFA=∠CFG
DF=FC

∴△ADF≌△GCF(AAS),
∴AF=FG,AD=CG.
又∵AE=EB,
∴EF∥BG,EF=
1
2
BG,
即EF∥AD∥BC,EF=
1
2
(AD+BC).