早教吧作业答案频道 -->其他-->
(2014•宿迁模拟)定义:min{a1,a2,a3,…,an}表示a1,a2,a3,…,an中的最小值.若定义f(x)=min{x,5-x,x2-2x-1},对于任意的n∈N*,均有f(1)+f(2)+…+f(2n-1)+f(2n)≤kf(n)成立,则
题目详情
(2014•宿迁模拟)定义:min{a1,a2,a3,…,an}表示a1,a2,a3,…,an中的最小值.若定义f(x)=min{x,5-x,x2-2x-1},对于任意的n∈N*,均有f(1)+f(2)+…+f(2n-1)+f(2n)≤kf(n)成立,则常数k的取值范围是
[−
,0]
1 |
2 |
[−
,0]
.1 |
2 |
▼优质解答
答案和解析
∵f(x)=min{x,5-x,x2-2x-1},
∴当n=1时,f(1)=-2,f(2)=-1;
∴f(1)+f(2)≤kf(1),即-3≤-2k,
解得:k≤
;
当n=2时,f(3)=min{3,5-3,32-2×3-1}=2,f(4)=1,
∴f(1)+f(2)+f(3)+f(4)≤kf(2),即-2-1+2+1≤k×(-1),
解得:k≤0;
当n=3时,f(5)=0,f(6)=-1,f(1)+f(2)+…+f(5)+f(6)=-1≤kf(3)=2k,
解得:k≥-
;
同理可得,当n=4时,f(7)=-2,f(8)=-3,依题意,可解得k≥-6;
当n=5时,f(9)=-4,f(10)=-5,同理解得k∈R;
当n=6时,f(11)=-6,f(12)=-7,依题意得k≤15;
…
∵对于任意的n∈N*,均有f(1)+f(2)+…+f(2n-1)+f(2n)≤kf(n)成立,
∴常数k的取值范围是[-
,0].
故答案为:[-
,0].
∴当n=1时,f(1)=-2,f(2)=-1;
∴f(1)+f(2)≤kf(1),即-3≤-2k,
解得:k≤
3 |
2 |
当n=2时,f(3)=min{3,5-3,32-2×3-1}=2,f(4)=1,
∴f(1)+f(2)+f(3)+f(4)≤kf(2),即-2-1+2+1≤k×(-1),
解得:k≤0;
当n=3时,f(5)=0,f(6)=-1,f(1)+f(2)+…+f(5)+f(6)=-1≤kf(3)=2k,
解得:k≥-
1 |
2 |
同理可得,当n=4时,f(7)=-2,f(8)=-3,依题意,可解得k≥-6;
当n=5时,f(9)=-4,f(10)=-5,同理解得k∈R;
当n=6时,f(11)=-6,f(12)=-7,依题意得k≤15;
…
∵对于任意的n∈N*,均有f(1)+f(2)+…+f(2n-1)+f(2n)≤kf(n)成立,
∴常数k的取值范围是[-
1 |
2 |
故答案为:[-
1 |
2 |
看了(2014•宿迁模拟)定义:m...的网友还看了以下:
1.若(2x-1)*(2-x)=ax的2次方+bx+c,则a=,b=,c=2.我校操场原来的长是2 2020-04-26 …
第一题“若代数式4X的2次方+2X+3的值为7,求代数式6X的2次方+3X-3的值!是次方后才进行 2020-04-27 …
1.若x^2+3x+1=6则x^2+1/x^2=?2.若2x/(x^2-4)=A/(x+2)+B/ 2020-05-22 …
填空题有好的答案150分计算:(2^2)(x+3)=计算:(2^2)^2-3^0+(-3)^23x 2020-06-15 …
-(a-b0的2次方的最大值是();当取最大值时,a与b的关系是()一个长方形的周长为c米,若该长 2020-07-09 …
a-b=3,那么a3次-b9次-9ab的值是若2x+y=3,则4的x次*2的y次=若x(y-1)- 2020-07-09 …
若2x的平方-3x-2除f(x),g(x)余式分别为2x+3与4x-1,则2x+1除f(x)-g( 2020-07-30 …
1.若mx的5次方y的n次方与3分之2x的a次方y的4次方(其中m为系数)的合等于零,求a(m+n 2020-08-01 …
1.将(a+b)+3(a+b)-5(a+b)合并同类项后可化简为()2.下类各组属于同类项的是:( 2020-08-01 …
若(2x-y)^2+|y+2|=0,求代数式(x-y)^2+(x+y)(x-y)/2x格式,解释 2020-11-01 …