早教吧作业答案频道 -->其他-->
(2009•吉林)某数学研究所门前有一个边长为4米的正方形花坛,花坛内部要用红、黄、紫三种颜色的花草种植成如图所示的图案,图案中AE=MN.准备在形如Rt△MEH的四个全等三角形内种植黄
题目详情
(2009•吉林)某数学研究所门前有一个边长为4米的正方形花坛,花坛内部要用红、黄、紫三种颜色的花草种植成如图所示的图案,图案中AE=MN.准备在形如Rt△MEH的四个全等三角形内种植黄色花草,在形如Rt△AEH的四个全等三角形内种植红色花草,在正方形MNPQ内种植紫色花草,每种花草的价格如下表:
设AE的长为x米,正方形EFGH的面积为S平方米,买花草所需的费用为W元,解答下列问题:
(1)S与x之间的函数关系式为S=______;
(2)求W与x之间的函数关系式,并求所需的最低费用是多少元;
(3)当买花草所需的费用最低时,求EM的长.
品 种 | 红色花草 | 黄色花草 | 紫色花草 |
价格(元/米2) | 60 | 80 | 120 |

(1)S与x之间的函数关系式为S=______;
(2)求W与x之间的函数关系式,并求所需的最低费用是多少元;
(3)当买花草所需的费用最低时,求EM的长.
▼优质解答
答案和解析
(1)由分析(1)可得答案
S=x2+(4-x)2或2x2-8x+16.(2分)
(2)W=60×4S△AEH+80(S正方形EFGH-S正方形MNPQ)+120S正方形MNPQ
=60×4×
x(4-x)+80[x2+(4-x)2-x2]+120x2(4分)
=80x2-160x+1280.(5分)
配方得W=80(x-1)2+1200.(6分)
∴当x=1时,W最小值=1200元.(7分)
(3)因为四个黄颜色的直角三角形全等,所以EM=QH,
设EM=a米,则MH=MQ+QH=MQ+EM=(a+1)米.
在Rt△EMH中,a2+(a+1)2=12+32,
解得a=
∵a>0
∴a=
∴EM的长为
米.(10分)
S=x2+(4-x)2或2x2-8x+16.(2分)
(2)W=60×4S△AEH+80(S正方形EFGH-S正方形MNPQ)+120S正方形MNPQ
=60×4×
1 |
2 |
=80x2-160x+1280.(5分)
配方得W=80(x-1)2+1200.(6分)
∴当x=1时,W最小值=1200元.(7分)
(3)因为四个黄颜色的直角三角形全等,所以EM=QH,
设EM=a米,则MH=MQ+QH=MQ+EM=(a+1)米.
在Rt△EMH中,a2+(a+1)2=12+32,
解得a=
−1±
| ||
2 |
∴a=
| ||
2 |
∴EM的长为
| ||
2 |
看了(2009•吉林)某数学研究所...的网友还看了以下:
关于交叉线和直连线如果相同的设备使用的是直连线,而不相同的设备之间却使用交叉线会怎样?连不上网络是 2020-04-07 …
某设备启用后,使用年份x(年)和所需的维修费用y(万元)有如下几组统计数据:x23456y2.23 2020-05-13 …
英语翻译1,如果是备件的质量问题,费用由卖方承担;2,如果是用户使用问题,费用由买方承担. 2020-05-13 …
王老师买了一套新房准备装修,如果用36平方分米的方砖铺地,要用450块,如果改用边长50厘米的方砖 2020-05-17 …
您刚刚在Windows 2000 Server上安装了一个即插即用设备不幸的是,因为一个先前安装的非 2020-05-31 …
设备材料采购评标,如果采用全寿命费用评价方法,其正确的做法是( )。A.确定一个统一的设备评审 2020-06-07 …
LiFePO4用于锂离子二次电池的电极材料,可由LiI和FePO4制备.(1)FePO4难溶于水, 2020-06-11 …
某研究性学习小组研究合成氨的原料N2和H2的制备方法,其结论如下:I,N2的制备方法①碳氢耗氧法: 2020-07-12 …
数学微积分连续复利某大型设备使用寿命为10年,如购买此设备需要250万元;如租用此设备每月需付租金6 2020-12-12 …
为支援四川抗震救灾,某市用大、小两种货车运送360台机械设备送往灾区,有二种运输方案:方案1:设备的 2020-12-15 …