早教吧 育儿知识 作业答案 考试题库 百科 知识分享

请大家写出柯氏定理-原理、公式

题目详情
请大家写出柯氏定理-原理、公式
▼优质解答
答案和解析
柯氏定理,卡塔朗猜想的重大突破.
1842年,法国数学家E.C.卡塔朗(Catalan)提出一个猜想:8和9是仅有的二个大于1的连续整数,它们都是正整数的乘幂.这一著名的猜想,在很长一段时间内,甚至连“是否有3个连续整数,它们都是正整数的乘幂;以及方程x2=yn十1(n>3,xy≠0)是否有正整数解”都未解决.1962年,柯召以极其精湛的方法解决了这两个难度很大的问题.他证明了不存在3个连续数都是正整数的乘幂,以及证明了方程x2=yn十1在n>3时无xy≠0的正整数解.这是研究卡塔朗猜想的重大突破.莫德尔的专著《不定方程》(The Diophantine Equations)中把柯召关于方程x2-1=yn的结果称为柯氏定理.特别是,他在证明这个定理时,提出了计算雅可比(Jacobi)符号 来研究不定方程的方法,这里 n是奇数,p、q是不同的奇素数.1977年,G.特尔加尼亚(Terjanian)对偶指数费马大定理第一情形的证明,以及1983年,A.罗特基维奇(Rotkiwicz)在不定方程中所取得的一系列重要结果,都用到柯召的方法和思想.
爱尔特希-柯-拉多定理
设S是一个有限集,|S|=n,Ai S,|Ai|≤k,n≥2k,A Aj,|A∩Aj|≠0,1≤i<j≤f(n,k),则f(n,k)≤,而且如果所有的Ai之间有一个公共元,则f(n,k)=.这就是著名的爱尔特希-柯-拉多定理.这个定理发表于1961年的文章中,30多年来,它已被上百篇文章引用.该文提出的许多问题,大大推动了极值集论的发展.正如P.弗兰克尔(Frankl)和R.L.格雷厄姆(Graham)最近所指出的:“爱尔特希-柯-拉多定理是组合数学中一个主要结果,这个定理开辟了极值集论迅速发展的道路.”
看了请大家写出柯氏定理-原理、公式...的网友还看了以下: