早教吧作业答案频道 -->数学-->
若x+y+z=7,x^2+y^2+z^2=11,xyz=6,求:1/x+1/y+1/z=?
题目详情
若x+y+z=7,x^2+y^2+z^2=11,xyz=6,求:1/x+1/y+1/z=?
▼优质解答
答案和解析
x+y+z=7
=>
(x+y+z)=49
=>
x^2 + y^2 + z^2 + 2xy + 2yz + 2xz = 49
=>
xy + yz + xz = (49-11)/2 = 19
1/x+1/y+1/z = (xy + yz + xz)/xyz = 19/6
=>
(x+y+z)=49
=>
x^2 + y^2 + z^2 + 2xy + 2yz + 2xz = 49
=>
xy + yz + xz = (49-11)/2 = 19
1/x+1/y+1/z = (xy + yz + xz)/xyz = 19/6
看了若x+y+z=7,x^2+y^...的网友还看了以下: