早教吧作业答案频道 -->数学-->
用洛必塔法则求极限lim(x趋于0)(1/sinx^2)-(1/x^2)
题目详情
用洛必塔法则 求极限 lim(x趋于0) (1/sinx^2)-(1/x^2)
▼优质解答
答案和解析
lim(x→0) (1/sinx^2)-(1/x^2) (通分)
=lim(x→0) (x^2-sinx^2)/(x^2sin^2x) (等价无穷小代换)
=lim(x→0) (x^2-sinx^2)/(x^4) (0/0,洛必达法则)
=lim(x→0) (2x-2sinxcosx)/(4x^3)
=lim(x→0) (x-1/2sin2x)/(2x^3) (0/0,洛必达法则)
=lim(x→0) (1-cos2x)/(6x^2) (等价无穷小代换)
=lim(x→0) 1/2(2x)^2/(6x^2)
=2/6
=1/3
=lim(x→0) (x^2-sinx^2)/(x^2sin^2x) (等价无穷小代换)
=lim(x→0) (x^2-sinx^2)/(x^4) (0/0,洛必达法则)
=lim(x→0) (2x-2sinxcosx)/(4x^3)
=lim(x→0) (x-1/2sin2x)/(2x^3) (0/0,洛必达法则)
=lim(x→0) (1-cos2x)/(6x^2) (等价无穷小代换)
=lim(x→0) 1/2(2x)^2/(6x^2)
=2/6
=1/3
看了用洛必塔法则求极限lim(x趋...的网友还看了以下: