早教吧作业答案频道 -->数学-->
如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连结BD、CD.(1)判断BD与AC的位置关系和数量关系,并证明;(2)如图2,若将△DCE绕点E旋转一定的角度后,BD与AC的位置关系和
题目详情
如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连结BD、CD.
(1)判断BD与AC的位置关系和数量关系,并证明;
(2)如图2,若将△DCE绕点E旋转一定的角度后,BD与AC的位置关系和数量关系是否发生变化?并证明;
(3)如图3,将(2)中的等腰直角三角形都换成等边三角形,其他条件不变,求BD与AC夹角的度数.
(1)判断BD与AC的位置关系和数量关系,并证明;
(2)如图2,若将△DCE绕点E旋转一定的角度后,BD与AC的位置关系和数量关系是否发生变化?并证明;
(3)如图3,将(2)中的等腰直角三角形都换成等边三角形,其他条件不变,求BD与AC夹角的度数.

▼优质解答
答案和解析
(1)BD与AC的位置关系是:BD⊥AC,数量关系是BD=AC.
理由如下:
延长BD交AC于点F.
∵AE⊥BC于E,
∴∠BED=∠AEC=90°.
∵AE=BE,DE=CE,
∴△DBE≌△CAE,
∴BD=AC,∠DBE=∠CAE,∠BDE=∠ACE.
∵∠BDE=∠ADF,
∴∠ADF=∠ACE.
∵∠ACE+∠CAE=90°,
∴∠ADF+∠CAE=90°,
∴BD⊥AC.
(2)①∵∠AEB=∠DEC=90°,
∴∠AEB+∠AED=∠DEC+∠AED,
即∠BED=∠AEC.
∵AE=BE,DE=CE,
∴△BED≌△AEC,
∴BD=AC,∠BDE=∠ACE,∠DBE=∠CAE.
∵∠BFC=∠ACD+∠CDE+∠BDE=∠ACD+∠CDE+∠ACE=90°,
∴BD⊥AC.
②BD与AC的数量关系是:BD=AC.
∵△ABE和△DCE是等边三角形,
∴∠AEB=∠ABE=60°,AE=BE,
∠DEC=∠DCE=60°,DE=CE,
∴∠AEB+∠AED=∠DEC+∠AED,
∴∠BED=∠AEC,
∴△BED≌△AEC.
∴BD=AC.
(3)∵△ABE和△DEC是等边三角形,
∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,
∴∠BEA+∠AED=∠DEC+∠AED,
∴∠BED=∠AEC,
在△BED和△AEC中,
∴△BED≌△AEC,
∴∠BED=∠ACE,
∴∠DFC=180°-(∠BDE+∠EDC+∠DCF)=60°
∴BD与AC的夹角度数为60°或120°.
理由如下:
延长BD交AC于点F.
∵AE⊥BC于E,
∴∠BED=∠AEC=90°.
∵AE=BE,DE=CE,
∴△DBE≌△CAE,
∴BD=AC,∠DBE=∠CAE,∠BDE=∠ACE.
∵∠BDE=∠ADF,
∴∠ADF=∠ACE.
∵∠ACE+∠CAE=90°,
∴∠ADF+∠CAE=90°,
∴BD⊥AC.
(2)①∵∠AEB=∠DEC=90°,
∴∠AEB+∠AED=∠DEC+∠AED,
即∠BED=∠AEC.
∵AE=BE,DE=CE,
∴△BED≌△AEC,
∴BD=AC,∠BDE=∠ACE,∠DBE=∠CAE.
∵∠BFC=∠ACD+∠CDE+∠BDE=∠ACD+∠CDE+∠ACE=90°,
∴BD⊥AC.
②BD与AC的数量关系是:BD=AC.
∵△ABE和△DCE是等边三角形,
∴∠AEB=∠ABE=60°,AE=BE,
∠DEC=∠DCE=60°,DE=CE,
∴∠AEB+∠AED=∠DEC+∠AED,
∴∠BED=∠AEC,
∴△BED≌△AEC.
∴BD=AC.
(3)∵△ABE和△DEC是等边三角形,
∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,
∴∠BEA+∠AED=∠DEC+∠AED,
∴∠BED=∠AEC,
在△BED和△AEC中,
|
∴△BED≌△AEC,
∴∠BED=∠ACE,
∴∠DFC=180°-(∠BDE+∠EDC+∠DCF)=60°
∴BD与AC的夹角度数为60°或120°.
看了如图1,在△ABC中,AE⊥B...的网友还看了以下:
单元音的问题[ɔ:]这个元音是不是[ɒ]这个元音的延长时间的读法?同理[3:](这里是那个音素的写 2020-05-14 …
如图,正方形ABCD和正方形EFGH是全等形,且点E是正方形ABCD的中心,现将正方形EFGH绕点 2020-05-16 …
防止休克后期弥散性血管内凝血宜选用A:甲酰四氢叶酸钙B:右旋糖酐铁C:右旋糖酐D:叶酸E:维生 2020-06-07 …
旋转工具选择一个答案a.只能旋转文本b.只能旋转图形对象c.能旋转文本和图形对象d.能旋旋转工具选 2020-07-16 …
如图,在△CAB、△DEF中,CA=CB,DE=DF,∠ACB=∠EDF=90°,若把△DEF的顶 2020-07-17 …
如图,△ACD和△ABE都是等腰直角三角形,∠DAC和∠EAB是直角,连接CE.(1)在图上画出△ 2020-07-27 …
(2012•成都)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°, 2020-08-03 …
在直角三角形abc中,角c=90度,bc=9,ac=12,点d在边ac上,且cd=1/3ac,过点d 2020-12-25 …
RT△ABC中,∠B为直角,∠A=60°,AB=2,BE⊥AC,垂足为E,D,F分别是线段AB,BC 2020-12-31 …
如图表示细菌三型.图中的Ⅰ、Ⅱ、Ⅲ依次是()A.球菌、杆菌、螺旋菌B.杆菌、球菌、螺旋菌C.螺旋菌、 2021-01-09 …