早教吧作业答案频道 -->数学-->
如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.求证:△AGE≌△AFE;(2)如图3,连接BD交AE
题目详情
如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.

(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.求证:△AGE≌△AFE;
(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.

(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.求证:△AGE≌△AFE;
(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.
▼优质解答
答案和解析
(1)由旋转的性质可知:AF=AG,∠DAF=∠BAG.
∵四边形ABCD为正方形,
∴∠BAD=90°.
又∵∠EAF=45°,
∴∠BAE+∠DAF=45°.
∴∠BAG+∠BAE=45°.
∴∠GAE=∠FAE.
在△GAE和△FAE中
,
∴△GAE≌△FAE(SAS);
(2)如图所示:将△ABM逆时针旋转90°得△ADM′.

∵四边形ABCD为正方形,
∴∠ABD=∠ADB=45°.
由旋转的性质可知:∠ABM=∠ADM′=45°,BE=DM′.
∴∠NDM′=90°.
∴NM′2=ND2+DM′2.
∵∠EAM′=90°,∠EAF=45°,
∴∠EAF=∠FAM′=45°.
在△AMN和△ANM′中,
,
∴△AMN≌△ANM′(SAS).
∴MN=NM′.
又∵BM=DM′,
∴MN2=ND2+BM2.
∵四边形ABCD为正方形,
∴∠BAD=90°.
又∵∠EAF=45°,
∴∠BAE+∠DAF=45°.
∴∠BAG+∠BAE=45°.
∴∠GAE=∠FAE.
在△GAE和△FAE中
|
∴△GAE≌△FAE(SAS);
(2)如图所示:将△ABM逆时针旋转90°得△ADM′.

∵四边形ABCD为正方形,
∴∠ABD=∠ADB=45°.
由旋转的性质可知:∠ABM=∠ADM′=45°,BE=DM′.
∴∠NDM′=90°.
∴NM′2=ND2+DM′2.
∵∠EAM′=90°,∠EAF=45°,
∴∠EAF=∠FAM′=45°.
在△AMN和△ANM′中,
|
∴△AMN≌△ANM′(SAS).
∴MN=NM′.
又∵BM=DM′,
∴MN2=ND2+BM2.
看了如图1,在正方形ABCD内作∠...的网友还看了以下:
已知函数f(x)=sin(wx+π/3)(x∈R),且f(π/6)=1(1)求w的最小值及此时函数 2020-05-20 …
已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则() 2020-06-03 …
函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,试比较f(1),f(2.5) 2020-06-08 …
已知定义在(-8,8)上的函数,f(x)既是奇函数又是减函数,求不等式f(7-a)<-f(5-a) 2020-06-09 …
已知偶函数f(x)对于任意x∈R都有f(x+1)=-f(x),且f(x)在区间[0,2]上是递增的 2020-06-26 …
已知集合A={5,6,7,8},设f,g都是由A到A的映射,其对应法则分别如表1和表2所示:则与f 2020-07-13 …
自考.工程经济学.(F/P,8%,5)=1.469(P/F,8%,5)=0.6806(F/A,8% 2020-07-18 …
还有一道题:(P/F,5%,1)=0.9524;(P/F,5%,5)=0.7835(F/P,5%, 2020-07-18 …
若关于x的不等式x2+ax-2>0在区间[1,5]上有解,则实数a的取值范围为多少?若不等式x2+ 2020-07-31 …
已知f(x)是定义(-00,+00)上的奇函数且f(x)在[0,+00)上是减函数,下列关系正确的 2020-08-01 …