早教吧作业答案频道 -->数学-->
在△ABC中,∠BAC=90°,AB=AC,∠ABC=∠ACB=45°,如图所示,点D、E分别是AB、AC边的中点,AF⊥BE交BC于点F,连结EF、CD交于点H.(1)求证:△ABE≌△ACD;(2)求证:∠EAF=∠ACD;(3)猜想直线EF
题目详情
在△ABC中,∠BAC=90°,AB=AC,∠ABC=∠ACB=45°,如图所示,点D、E分别是AB、AC边的中点,AF⊥BE交BC于点F,连结EF、CD交于点H.

(1)求证:△ABE≌△ACD;
(2)求证:∠EAF=∠ACD;
(3)猜想直线EF与直线CD的位置关系.

(1)求证:△ABE≌△ACD;
(2)求证:∠EAF=∠ACD;
(3)猜想直线EF与直线CD的位置关系.
▼优质解答
答案和解析
(1)∵点D、E分别是AB、AC边的中点,∴AD=AE,
∵在△ABE和△ACD中,
,
∴△ABE≌△ACD,(SAS);
(2)∵∠EAF+∠AEB=90°,∠ABE+∠AEB=90°,
∴∠EAF=∠ABE,
∵△ABE≌△ACD,
∴∠ABE=∠ACD,
∴∠EAF=∠ACD;
(3)证明:如图,过点C作CM⊥AC交AF延长线于点M,

∵在△ABE和△CAM中,
,
∴△ABE≌△CAM(ASA),
∴AE=CM,∠AEB=∠M,
∵AE=EC,
∴EC=CM,
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∵∠ACM=90°,
∴∠FCM=90-45°=45°=∠ACF,
在△EFC和△MFC中,
,
∴△EFC≌△MCF(SAS),
∴∠FEC=∠M,
∴∠FEC=∠FCM,
∵AB=AC,点D、E分别是AB、AC边的中点,
∴AD=AE,
在△ABE与△ACD中,
,
∴△ABE≌△ACD(SAS)
∴∠ABE=∠ACD,
∴∠ACD+∠FEC=90°,
∴∠EHC=90°,
∴EF⊥CD.
∵在△ABE和△ACD中,
|
∴△ABE≌△ACD,(SAS);
(2)∵∠EAF+∠AEB=90°,∠ABE+∠AEB=90°,
∴∠EAF=∠ABE,
∵△ABE≌△ACD,
∴∠ABE=∠ACD,
∴∠EAF=∠ACD;
(3)证明:如图,过点C作CM⊥AC交AF延长线于点M,

∵在△ABE和△CAM中,
|
∴△ABE≌△CAM(ASA),
∴AE=CM,∠AEB=∠M,
∵AE=EC,
∴EC=CM,
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∵∠ACM=90°,
∴∠FCM=90-45°=45°=∠ACF,
在△EFC和△MFC中,
|
∴△EFC≌△MCF(SAS),
∴∠FEC=∠M,
∴∠FEC=∠FCM,
∵AB=AC,点D、E分别是AB、AC边的中点,
∴AD=AE,
在△ABE与△ACD中,
|
∴△ABE≌△ACD(SAS)
∴∠ABE=∠ACD,
∴∠ACD+∠FEC=90°,
∴∠EHC=90°,
∴EF⊥CD.
看了在△ABC中,∠BAC=90°...的网友还看了以下:
提示:D-C=0A-B,A-D,D-C,D-E,E-F=1A-D,C-F=2A-B,D-E,E-F 2020-04-06 …
已知A与(B或C)=D,能否得出结论:Aand非(B与C)=非D?已知定理:A与(B或C)=D如: 2020-04-06 …
24 (a+b)/(c+d)=(√a^2+b^2)/√ (c^2+d^2)成立证明:(1)a/b= 2020-05-14 …
若非空集合M⊆N={a,b,c,d},则M的个数为8个{a},{b},{c},{d},{a,b}, 2020-05-15 …
#includemain(){inta=0x7fffffff,b=025;floatf1=123. 2020-05-19 …
进行下列数的数制转换(213)D=()B=()H=()O(69.625)D=()B=()H=()O 2020-05-21 …
进制换算(213)D=()B=()H=()O(69.625)D=()D=()B=()O(127)D 2020-07-19 …
a,b,c,d表示4个有理数,已知其中每三个数之和如下:a+b+c=1,a+b+d=-3,a+c+d 2020-11-03 …
判断下列命题的真假已知a,b,c,d∈R(1)若ac>bc,则a>b(2)若a>-b,则c-ab>c 2020-12-13 …
请问谁知道用matlab求解多元超越方程组的方法或思路或函数不?形如:a*(1+a+a^3+d+d^ 2020-12-14 …