早教吧作业答案频道 -->英语-->
英语考试:不同的人有不同的爱好,你的爱好是什么呢?请你介绍一下你的爱好.内容包括:1,爱好-2喜欢的原因;3爱好对你的影响.词数70左右,可适当发挥.首先句已给出,不计入总词数Differentpeo
题目详情
英语考试:不同的人有不同的爱好,你的爱好是什么呢?请你介绍一下你的爱好.内容包括:1,爱好-2喜欢的原因;3爱好对你的影响.词数70左右,可适当发挥.首先句已给出,不计入总词数 Different peopie have different hobbies.
▼优质解答
答案和解析
People are different in terms of characteristics. Therefore, different people tend to have different hobbies. My hobby is to collect stamps from countries around the world with a focus on two themes: China and world-wide sports. I have learned a lot about China from the stamps I have collected each of which has a story behind it. For example, the stamps of Manchukuo told me the history about the Japanese invasion into China and how the last emperor of China became the puppet emperor of the Japanese-occupied Manchukuo (parts of northeast China). Similarly, I have learned quite a bit about the world-wide sports, not only in terms of the place and time of a particular event such as the World Cup, not also the history and culture of the host nation.
看了英语考试:不同的人有不同的爱好...的网友还看了以下:
下列选项那个是正确的啊设α1,…,αn-r是齐次线性方程组Ax=0的基础解系,则下列结论不正确的是( 2020-03-30 …
已知f(x)=3x/x+3数列{an}满足an=f(An-1)(n>1a不等于0已知f(x)=3x 2020-05-13 …
高中求数列通项几种类型有几个类型我不会,老是也没讲,①A(n+1)=pAn+q的n次幂②An=pA 2020-06-03 …
y=2n+1(n∈R)和y=2x+1(x∈R)是同一函数吗? 2020-06-06 …
{an}=1/n是不是单调有界数列?单调有界数列收敛这个论断是正确的,那么{an}=1/n是不是就 2020-07-31 …
r(A)=r=行秩=列秩=dimV=n-rr(A)为矩阵的秩=行向量组的秩=列向量组的秩=向量空间( 2020-11-01 …
级数N(0-正无穷),那么1/ln(1+n)是不是绝对收敛1/ln(1+n)>1/n这是为什么啊 2020-11-18 …
向量的集合部分问题设M=﹛a|a=(2,0)+m(0,1),m∈R﹜和N=﹛b|b=(1,1)+n( 2020-11-30 …
对于正整数,有1/n2-4=1/4(1/n-2-1/n+2)怎么推导出来的我问的是怎么从1/n2-4 2020-12-28 …
关于基础解系与极大无关组的关系老师您好,我是名GCT考生,看辅导教材中说到,基础解系就是极大无关组, 2021-01-10 …