早教吧作业答案频道 -->其他-->
√/x-y/+√/y-z/+√/z-x/的最大值其中x,y,z《0,1》
题目详情
√/x-y/+√/y-z/+√/z-x/的最大值其中x,y,z《0,1》
▼优质解答
答案和解析
须是闭区间,即x,y,z∈[0,1],否则无最大值.
若x,y,z∈[0,1],不妨设0 ≤ x≤y≤z≤1,
由三个非负数的算术平均数不大于它们的平方平均数,得
[√|x-y|+√|y-z|+√|z-x|]/3≤√[(|x-y|+|y-z|+|z-x|)/3]= √[(y-x+z-y+z-x)/3]=√[2(z-x)/3]≤√(2/3),
即√|x-y|+√|y-z|+√|z-x|≤√6,
当且仅当y-x=z-y=z-x,且z=1,x=0,即x=0,y=1/2,z=1时等式成立,
故√|x-y|+√|y-z|+√|z-x|的最大值为√6.
若x,y,z∈[0,1],不妨设0 ≤ x≤y≤z≤1,
由三个非负数的算术平均数不大于它们的平方平均数,得
[√|x-y|+√|y-z|+√|z-x|]/3≤√[(|x-y|+|y-z|+|z-x|)/3]= √[(y-x+z-y+z-x)/3]=√[2(z-x)/3]≤√(2/3),
即√|x-y|+√|y-z|+√|z-x|≤√6,
当且仅当y-x=z-y=z-x,且z=1,x=0,即x=0,y=1/2,z=1时等式成立,
故√|x-y|+√|y-z|+√|z-x|的最大值为√6.
看了√/x-y/+√/y-z/+√...的网友还看了以下: