早教吧作业答案频道 -->数学-->
求∫1/(x^4-1)的不定积分
题目详情
求∫1/(x^4-1)的不定积分
▼优质解答
答案和解析
∫1/(x^4-1)dx=∫1/[(x?-1)(x?+1)]dx=(1/2)∫[1/(x?-1)]-[1/(x?+1)]dx=(1/2)∫[1/(x?-1)]dx-(1/2)∫[1/(x?+1)]dx=(1/4)∫[1/(x-1)]-[1/(x+1)]dx-(1/2)arctanx=(1/4)∫[1/(x-1)]dx-(1/4)∫[1/(x+1)]dx-(1/2)arctanx=(1/4)ln|x-1|-(1/4)ln|x+1|-(1/2)arctanx=(1/4)ln(|x-1|/|x+1|)-(1/2)arctanx
看了求∫1/(x^4-1)的不定积...的网友还看了以下: