早教吧作业答案频道 -->其他-->
(2011•江西)(1)已知两个等比数列{an},{bn},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若数列{an}唯一,求a的值;(2)是否存在两个等比数列{an},{bn},使得b1-a1,b2-a2,b3-a3.b4-a4成公差
题目详情
(2011•江西)(1)已知两个等比数列{an},{bn},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若数列{an}唯一,求a的值;
(2)是否存在两个等比数列{an},{bn},使得b1-a1,b2-a2,b3-a3.b4-a4成公差不 为0的等差数列?若存在,求{an},{bn}的通项公式;若不存在,说明理由.
(2)是否存在两个等比数列{an},{bn},使得b1-a1,b2-a2,b3-a3.b4-a4成公差不 为0的等差数列?若存在,求{an},{bn}的通项公式;若不存在,说明理由.
▼优质解答
答案和解析
(1)设{an}的公比为q,
∵a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,
∴b1=1+a,b2=2+aq,b3=3+aq2,
∵b1,b2,b3成等比数列,
∴(2+aq)2=(1+a)(3+aq2)即aq2-4aq+3a-1=0,
∵a>0,
∴△=4a2+4a>0,
∴方程有两个不同的实根,
又∵数列{an}唯一,
∴方程必有一根为0,将q=0代入方程得a=
,
∴a=
;
(2)假设存在两个等比数列{an},{bn},使b1-a1,b2-a2,b3-a3,b4-a4成公差不为0的等差数列,
设{an}的公比为q1,{bn}的公比为q2,
则b2-a2=b1q2-a1q1,b3-a3=b1q22-a1q12,b4-a4=b1q23-a1q13,
由b1-a1,b2-a2,b3-a3,b4-a4成的等差数列得:
即
∵a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,
∴b1=1+a,b2=2+aq,b3=3+aq2,
∵b1,b2,b3成等比数列,
∴(2+aq)2=(1+a)(3+aq2)即aq2-4aq+3a-1=0,
∵a>0,
∴△=4a2+4a>0,
∴方程有两个不同的实根,
又∵数列{an}唯一,
∴方程必有一根为0,将q=0代入方程得a=
1 |
3 |
∴a=
1 |
3 |
(2)假设存在两个等比数列{an},{bn},使b1-a1,b2-a2,b3-a3,b4-a4成公差不为0的等差数列,
设{an}的公比为q1,{bn}的公比为q2,
则b2-a2=b1q2-a1q1,b3-a3=b1q22-a1q12,b4-a4=b1q23-a1q13,
由b1-a1,b2-a2,b3-a3,b4-a4成的等差数列得:
|
即
|
看了(2011•江西)(1)已知两...的网友还看了以下:
电解质溶液中阴离子放电顺序为s2->I->Br->cl->oH->阴离子团>F-是否仅限于浓溶液中 2020-05-13 …
x1<x2>0是否说明x1>0若A(x1,y1)与点B(x2,y2)在反比例函数y=-2/x的图像 2020-05-21 …
关于基团的迁移顺序含氮含氧重排(比如说Baeyer-Villiger氧化重排)中的迁移顺序是H>叔 2020-07-01 …
下列命题中:①“若x2+x-6≥0,则x>2”的否命题是真命题;②命题“∃x∈R,x2-x>0”的 2020-07-09 …
(2012•安徽模拟)下列说法不正确的是()A.“∃x0∈R,x20-x0-1<0”的否定是“∀x 2020-07-09 …
下列四个命题:①“∃x∈R,x2-x+1≤0”的否定;②“若x2+x-6≥0,则x>2”的否命题; 2020-07-14 …
下列说法正确的是()A、命题“若a>b,则a2>b2”的否命题是“若a<b,则a2<b2”B、命题 2020-08-01 …
下列命题中①“若ab=0,则a=0或b=0”的逆命题;②“若x2+y2≠0,则x,y不全为零”的否 2020-08-01 …
下列命题中,为真命题的是()A.若sinα=sinβ,则α=βB.命题“若x≠1,则x2+x-2≠0 2020-11-02 …
在下列说法中,①算法的三种基本结构是顺序结构、分支结构、循环结构;②“若a>1且b>1,则a+b>2 2020-12-21 …