早教吧 育儿知识 作业答案 考试题库 百科 知识分享

证明cos((x1+x2)/2)>(cosx1+cosx2)/2,对任意x1,x2属于(-3.14,3.14)(-π/2,π/2)刚才打错了

题目详情
证明cos((x1+x2)/2)>(cosx1+cosx2)/2,对任意x1,x2属于(-3.14,3.14)
(-π/2,π/2)刚才打错了
▼优质解答
答案和解析
证明:由和差化积公式可得:
(cosx1+cosx2)/2=2cos[(x1+x2)/2]*cos[(x1-x2)/2]/2
=cos[(x1+x2)/2]*cos[(x1-x2)/2]
因为x1,x2∈(-π/2,π/2),则x1+x2∈(-π,π)
所以(x1+x2)/2∈(-π/2,π/2)
则cos(x1+x2)/2>0
又x1-x2∈(-π,π)即(x1-x2)/2∈(-π/2,π/2)
则cos[(x1-x2)/2]cos[(x1+x2)/2]*cos[(x1-x2)/2]
即cos[(x1+x2)/2]>(cosx1+cosx2)/2
看了证明cos((x1+x2)/2...的网友还看了以下: