早教吧作业答案频道 -->数学-->
函数y=x-1/x+2(x>-4)的值域是?将原函数y=(x-1)/(x+2)变形为x=(1+2y)/(1-y)因为x>-4所以(1+2y)/(1-y)>-4继续变形:(1+2y)/(1-y)+4>0(5-2y)/(1-y)>0上式
题目详情
函数y=x-1/x+2(x>-4)的值域是?
将原函数y=(x-1)/(x+2)变形为
x=(1+2y)/(1-y)
因为x>-4
所以(1+2y)/(1-y)>-4
继续变形:
(1+2y)/(1-y)+4>0
(5-2y)/(1-y)>0
上式说明分子分母同号,所以分子与分母相乘也大于0,即
(5-2y)*(1-y)>0
(y-5/2)*(y-1)>0
解这个不等式得
y<1或y>5/2
如何从y=(x-1)/(x+2)变为 x=(1+2y)/(1-y)
将原函数y=(x-1)/(x+2)变形为
x=(1+2y)/(1-y)
因为x>-4
所以(1+2y)/(1-y)>-4
继续变形:
(1+2y)/(1-y)+4>0
(5-2y)/(1-y)>0
上式说明分子分母同号,所以分子与分母相乘也大于0,即
(5-2y)*(1-y)>0
(y-5/2)*(y-1)>0
解这个不等式得
y<1或y>5/2
如何从y=(x-1)/(x+2)变为 x=(1+2y)/(1-y)
▼优质解答
答案和解析
1)第一个问题
如何从y=(x-1)/(x+2)变为 x=(1+2y)/(1-y)
y=(x-1)/(x+2)
两边同时乘以x+2
yx+2y=x-1
移项:
yx-x=-1-2y
(y-1)x=-(1+2y)
x=-(1+2y)/(y-1)=(1+2y)/(1-y)
2)本题还可以这样做
y=(x-1)/(x+2)= [(x+2)-3]/(x+2)
=1-3/(x+2)
∵x>-4
∴-20
∴1/(x+2)0
∴-3/(x+2)>3/2 ,或-3/(x+2)<0
∴1-3/(x+2)>5/2或1-3/(x+2)<1
∴函数值域为(5/2,+∞) U(-∞,1)
如何从y=(x-1)/(x+2)变为 x=(1+2y)/(1-y)
y=(x-1)/(x+2)
两边同时乘以x+2
yx+2y=x-1
移项:
yx-x=-1-2y
(y-1)x=-(1+2y)
x=-(1+2y)/(y-1)=(1+2y)/(1-y)
2)本题还可以这样做
y=(x-1)/(x+2)= [(x+2)-3]/(x+2)
=1-3/(x+2)
∵x>-4
∴-2
∴1/(x+2)0
∴-3/(x+2)>3/2 ,或-3/(x+2)<0
∴1-3/(x+2)>5/2或1-3/(x+2)<1
∴函数值域为(5/2,+∞) U(-∞,1)
看了函数y=x-1/x+2(x>-...的网友还看了以下: