早教吧作业答案频道 -->数学-->
.在△ABC中,A,B,C为三个内角,a,b,c,为三条边,π/3<C>π/2,且b/(a-b)=sin2C/(sinA-sin2C)(1)判断△ABC的形状(2)若|向量BA+向量BC|=2,求向量BA乘向量BC的取值范围
题目详情
.在△ABC中,A,B,C为三个内角,a,b,c,为三条边,π/3<C>π/2,且b/(a-b)=sin2C/(sinA-sin2C)
(1)判断△ABC的形状(2)若|向量BA+向量BC|=2,求向量BA 乘 向量BC的取值范围
(1)判断△ABC的形状(2)若|向量BA+向量BC|=2,求向量BA 乘 向量BC的取值范围
▼优质解答
答案和解析
(1)由已知得:(a-b)/b=(sinA-sin2C)/sin2C
所以:a/b -1=sinA/sin2C -1 即为:a/b = sinA/sin2C
由正弦定理:sinA/sinB = sinA/sin2C 所以:sinB = sin2C
所以:B=2C 或 B+2C = π
又已知:π/3 <C <π/2 所以:2π/3 <2C <π
若B=2C,则有 B+C=3C >π 不可能
所以必须:B+2C = π ,即:B+C+C = π 然而:B+C+A = π
所以C=A,△ABC是等腰三角形.
(2)"|向量BA+向量BC|=2 " 简写为:|c+a|=2 , " 向量BA 乘 向量BC "简写为:ca
|c+a|^2 =(c+a)^2 =c^2+2ca+a^2 =|c|^2+2|c||a|cosB+|a|^2 =4
因为C=A 所以 |c|=|a|代入上式得:|a|^2(1+cosB)=2 即为:|a|^2= 2/(1+cosB)
ca= |a|^2(cosB)=2cosB /(1+cosB)= 2/(1+1/cosB)
由(1)得B+2C = π 且 2π/3 <2C <π 所以:0 <B <π/3 所以: 1/2<cosB <1
1<1/cosB <2 ,2<1+1/cosB<3 , 2/3 < 2/(1+1/cosB)<1
所以: 向量BA 乘 向量BC的取值范围是:( 2/3 ,1)
所以:a/b -1=sinA/sin2C -1 即为:a/b = sinA/sin2C
由正弦定理:sinA/sinB = sinA/sin2C 所以:sinB = sin2C
所以:B=2C 或 B+2C = π
又已知:π/3 <C <π/2 所以:2π/3 <2C <π
若B=2C,则有 B+C=3C >π 不可能
所以必须:B+2C = π ,即:B+C+C = π 然而:B+C+A = π
所以C=A,△ABC是等腰三角形.
(2)"|向量BA+向量BC|=2 " 简写为:|c+a|=2 , " 向量BA 乘 向量BC "简写为:ca
|c+a|^2 =(c+a)^2 =c^2+2ca+a^2 =|c|^2+2|c||a|cosB+|a|^2 =4
因为C=A 所以 |c|=|a|代入上式得:|a|^2(1+cosB)=2 即为:|a|^2= 2/(1+cosB)
ca= |a|^2(cosB)=2cosB /(1+cosB)= 2/(1+1/cosB)
由(1)得B+2C = π 且 2π/3 <2C <π 所以:0 <B <π/3 所以: 1/2<cosB <1
1<1/cosB <2 ,2<1+1/cosB<3 , 2/3 < 2/(1+1/cosB)<1
所以: 向量BA 乘 向量BC的取值范围是:( 2/3 ,1)
看了.在△ABC中,A,B,C为三...的网友还看了以下:
已知向量a的膜=根号2,向量b的膜=1,向量a与向量b的夹角为45度求 使向量(2向量a+λ向量b 2020-04-05 …
数学问题在锐角三角形中,角ABC的对边分别是abc,且∠B=60°,向量m=(sinA,1),向量 2020-05-14 …
已知向量a的模长为2,向量b模长为4,两向量夹角为120°,则使向量a+k×向量a+向量b的夹角是 2020-05-14 …
有点忘记了已知向量a和向量b的夹角是45度,向量的绝对值a=根号2,向量的绝对值b=3,求使向量b 2020-05-16 …
已知向量a=(-2,-1),向量b=(λ,1)且向量a与向量b夹角为钝角,求λ的范围我就是不明白向 2020-05-17 …
向量求夹角范围向量a=(2,0),b=(2+cosα,2√3+2sinα),求两向量的夹角范围 2020-06-06 …
已知向量a,b的夹角为a,向量a+向量b的模为2倍根号3,向量a-向量b的模=2,则a的取值范围为 2020-07-07 …
请问在向量代数中,向量与向量的夹角范围,线线的夹角范围,线面的夹角范围,面面的夹角范围都是多少啊. 2020-07-31 …
在三角形abc中,内角ABC分别为边长abc,向量AB×向量AC=8,角bac=θ.a=4求bc的最 2020-11-24 …
已知向量向量与向量的夹角为,且。(1)求向量;(2)若向量与共线,向量,其中、为的内角,且、、依次成 2021-01-09 …