早教吧作业答案频道 -->数学-->
(2009•义乌)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如
题目详情
(2009•义乌)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;
(2)若某函数是反比例函数y=
(k>0),他的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;
(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标______,写出符合题意的其中一条抛物线解析式______,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数______.

(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;
(2)若某函数是反比例函数y=
(k>0),他的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标______,写出符合题意的其中一条抛物线解析式______,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数______.

▼优质解答
答案和解析
此题较为新颖,特别要注意审题和分析题意,耐心把题读完,知A、B为坐标轴上两点,C、D为函数图象上的两点:(1)先正确地画出图形,再利用正方形的性质确定相关点的坐标从而计算正方形的边长,注意思维的严密性.
(2)因为ABCD为正方形,所以可作垂线得到等腰直角三角形,利用点D(2,m)的坐标表示出点C的坐标从而求解.
(3)注意思维的严密性,抛物线开口既可能向上,也可能向下.当抛物线开口向上时,正方形的另一个顶点也是在抛物线上,这个点既可能在点(3,4)的左边,也可能在点(3,4)的右边,过点(3,4)向x轴作垂线,利用全等三角形确定线段的长即可确定抛物线上另一个点的坐标;当抛物线开口向下时也是一样地分为两种情况来讨论.
【解析】
(1)如图1,
当点A在x轴正半轴,点B在y轴负半轴上时,
∵OC=0D=1,
∴正方形ABCD的边长CD=
;∠OCD=∠ODC=45°,
当点A在x轴负半轴、点B在y轴正半轴上时,
设小正方形的边长为a,
易得CL=小正方形的边长=DK=LK,故3a=CD=
.
解得a=
,所以小正方形边长为
,
∴一次函数y=x+1图象的伴侣正方形的边长为
或
;
(2)如图2,作DE,CF分别垂直于x、y轴,
易知△ADE≌△BAO≌△CBF
此时,m<2,DE=OA=BF=m,OB=CF=AE=2-m,
∴OF=BF+OB=2,
∴C点坐标为(2-m,2),
∴2m=2(2-m),解得m=1.
反比例函数的解析式为y=
.
(3)【解析】
实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合
1、当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=-
x2+
;
2、当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,
3、当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在
4、当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(-1,3),对应的函数的解析式是y=
x2+
;
5、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(7,-3)时,对应的函数解析式是y=-
;
6、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(-4,7)时,对应的抛物线为y=
x2+
;
∵由抛物线的伴侣正方形的定义知,一条抛物线有两个伴侣正方形,是成对出现的,
∴所求出的任何抛物线的伴侣正方形个数为偶数.
(2)因为ABCD为正方形,所以可作垂线得到等腰直角三角形,利用点D(2,m)的坐标表示出点C的坐标从而求解.
(3)注意思维的严密性,抛物线开口既可能向上,也可能向下.当抛物线开口向上时,正方形的另一个顶点也是在抛物线上,这个点既可能在点(3,4)的左边,也可能在点(3,4)的右边,过点(3,4)向x轴作垂线,利用全等三角形确定线段的长即可确定抛物线上另一个点的坐标;当抛物线开口向下时也是一样地分为两种情况来讨论.
【解析】
(1)如图1,

当点A在x轴正半轴,点B在y轴负半轴上时,
∵OC=0D=1,
∴正方形ABCD的边长CD=
;∠OCD=∠ODC=45°,当点A在x轴负半轴、点B在y轴正半轴上时,
设小正方形的边长为a,
易得CL=小正方形的边长=DK=LK,故3a=CD=
.解得a=
,所以小正方形边长为
,∴一次函数y=x+1图象的伴侣正方形的边长为
或
;(2)如图2,作DE,CF分别垂直于x、y轴,

易知△ADE≌△BAO≌△CBF
此时,m<2,DE=OA=BF=m,OB=CF=AE=2-m,
∴OF=BF+OB=2,
∴C点坐标为(2-m,2),
∴2m=2(2-m),解得m=1.
反比例函数的解析式为y=
.(3)【解析】
实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合
1、当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=-
x2+
;2、当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,
3、当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在
4、当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(-1,3),对应的函数的解析式是y=
x2+
;5、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(7,-3)时,对应的函数解析式是y=-
;6、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(-4,7)时,对应的抛物线为y=
x2+
;∵由抛物线的伴侣正方形的定义知,一条抛物线有两个伴侣正方形,是成对出现的,
∴所求出的任何抛物线的伴侣正方形个数为偶数.
看了(2009•义乌)已知点A、B...的网友还看了以下:
设函数f(x)=x|x|+bx+c,给出下列四个命题:①当x>0时,f(x)是增函数;②f(x)的 2020-05-01 …
数学填空题1.最小的四位数是(),最大的三位数是(),它们的差除以0.01,商是().2.当a÷0 2020-05-13 …
在平面直角坐标系中,A,B两点的坐标分别为A(3,2)B(1,1)若点p的坐标为(0,m),当m= 2020-06-03 …
选通控制端有4个输入:S0,S1,S2,S3,当且仅当S0=0,Y=A;S1=0,Y=B;S2=0 2020-06-16 …
急!数学问题已知平面直角坐标系,A,B两点的坐标分别为(2,-3),(4,-1)若P(p,0)是x 2020-06-28 …
平面直角坐标系中,AB两点坐标分别为A(3,2)B(1,5).没图.(1)若p(0,m)当m=?时 2020-07-30 …
一次函数性质中,为什么说:当K>0时,图像必经过一三象限······当K>0时,图像必须经过二四象 2020-08-02 …
方程组y=ay=|x2+x-2|(x2为x的平方)有四组不同的解,则a的取值范围是解:由题意可知x^ 2020-11-03 …
一般地式子的叫做方程axp²++bx+c=0(a不等于0+)根的判别式,通常用希腊字母表示它,即.当 2020-11-07 …
数学书上写的定理是什么意思?|a|=a,当a>0时|a|=0,当a=0时|a|=-a,当a<0时数学 2021-01-22 …