早教吧作业答案频道 -->其他-->
若x/(y+z+t)=y/(z+t+x)=z/(t+x+y)=t/(x+y+z)即f=(x+y)/(z+t)+(y+z)/(x+t)+(z+t)/(x+y)=(t+x)/(y+z)证明:f是一个整数f=(x+y)/(z+t)+(y+z)/(x+t)+(z+t)/(x+y)+(t+x)/(y+z)后面那个是加号,不好意思,打错了
题目详情
若 x/(y+z+t)=y/(z+t+x)=z/(t+x+y)=t/(x+y+z)
即 f=(x+y)/(z+t)+(y+z)/(x+t)+(z+t)/(x+y)=(t+x)/(y+z)
证明:f是一个整数
f=(x+y)/(z+t)+(y+z)/(x+t)+(z+t)/(x+y)+(t+x)/(y+z)
后面那个是加号,不好意思,打错了
即 f=(x+y)/(z+t)+(y+z)/(x+t)+(z+t)/(x+y)=(t+x)/(y+z)
证明:f是一个整数
f=(x+y)/(z+t)+(y+z)/(x+t)+(z+t)/(x+y)+(t+x)/(y+z)
后面那个是加号,不好意思,打错了
▼优质解答
答案和解析
题目中f的表达式中最后那个等号应该是+号吧
f=(x+y)/(z+t)+(y+z)/(x+t)+(z+t)/(x+y)+(t+x)/(y+z)
设:a = x + y + z + t
并设:
k = x/(y+z+t) = y/(z+t+x) = z/(t+x+y) = t/(x+y+z)
由k = x/(y+z+t),得:
k = x/(a-x)
即:
(k+1)x = ak ………………①
同理可得:
(k+1)y = ak ………………②
(k+1)z = ak ………………③
(k+1)t = ak ………………④
(1)若k = -1,则由①得:
0*x = -a
得:a = 0,即x + y + z + t = 0
即:x+y = -(z+t);y+z = -(x+t);z+t = -(x+y);t+x = -(y+z)
因此:
f = (x+y)/(z+t) + (y+z)/(x+t) + (z+t)/(x+y) + (t+x)/(y+z)
= -1*4 = -4
(2)若k ≠ -1,则由①~④得:
x = y = z = t = ak/(k+1)
因此:
f = (x+y)/(z+t) + (y+z)/(x+t) + (z+t)/(x+y) + (t+x)/(y+z)
= 1*4 = 4
由(1)(2)知,f为整数
f=(x+y)/(z+t)+(y+z)/(x+t)+(z+t)/(x+y)+(t+x)/(y+z)
设:a = x + y + z + t
并设:
k = x/(y+z+t) = y/(z+t+x) = z/(t+x+y) = t/(x+y+z)
由k = x/(y+z+t),得:
k = x/(a-x)
即:
(k+1)x = ak ………………①
同理可得:
(k+1)y = ak ………………②
(k+1)z = ak ………………③
(k+1)t = ak ………………④
(1)若k = -1,则由①得:
0*x = -a
得:a = 0,即x + y + z + t = 0
即:x+y = -(z+t);y+z = -(x+t);z+t = -(x+y);t+x = -(y+z)
因此:
f = (x+y)/(z+t) + (y+z)/(x+t) + (z+t)/(x+y) + (t+x)/(y+z)
= -1*4 = -4
(2)若k ≠ -1,则由①~④得:
x = y = z = t = ak/(k+1)
因此:
f = (x+y)/(z+t) + (y+z)/(x+t) + (z+t)/(x+y) + (t+x)/(y+z)
= 1*4 = 4
由(1)(2)知,f为整数
看了若x/(y+z+t)=y/(z...的网友还看了以下:
有四个命题其中真命题的序号是1.若a>b则ac^>bc^2.若a 2020-05-20 …
若复数z的虚部不为零,且z^3+z+1=0,则A.|z|<1B.|z|=1C.1<|z|<根号2D 2020-06-12 …
改弦更()仗义()言举世()惊莫()一是接()而来揣()不安故作()态括号是Z开头 2020-06-21 …
ip地址的问题主机130.45.36.78属于类网络,其网络号是。若该主机要给IP地址是154.5 2020-07-09 …
有理数无理数若有理数X、Y、Z满足根号X加根号下Y-1加根号下Z-2等于1/2(X+Y+z),确定 2020-07-26 …
给出下列命题(1)实数的共轭复数一定是实数;(2)满足|z-i|+|z+i|=2的复数z的轨迹是椭 2020-08-02 …
判断下列命题是否是真命题:若z^2≥0,则z为实数1.若z-z ̄=0,则z为实数()2.若z*z ̄ 2020-08-02 …
给出下列命题(1)实数的共轭复数一定是实数;(2)满足|z-i|+|z+i|=2的复数z的轨迹是椭 2020-08-02 …
一.设X,Y,Z为正数,且x^2+y^2+Z^2=1,求证:xy/z+yz/x+zx/y>=根号3二 2020-10-31 …
给出下列命题:①若z∈C,则zf≥地;②若a,b∈R,且a>b则a+i>b+i;③若a∈R,则(a+ 2020-12-23 …