早教吧作业答案频道 -->其他-->
探究:如图①,在矩形ABCD中,过点A作∠EAF=∠BAD,AE交线段BC于点E,AF交线段CD的延长线于点F.求证:△ABE∽△ADF.拓展:如图②,在四边形ABCD中,∠ABC+∠ADF=180°,过点A作∠EAF=∠BAD,AE交线
题目详情
探究:如图①,在矩形ABCD中,过点A作∠EAF=∠BAD,AE交线段BC于点E,AF交线段CD的延长线于点F.求证:△ABE∽△ADF.
拓展:如图②,在四边形ABCD中,∠ABC+∠ADF=180°,过点A作∠EAF=∠BAD,AE交线段BC于点E,AF交线段CD延长线于点F.若AB:AD=2:3,求△ABE的面积与△ADF的面积之比.

拓展:如图②,在四边形ABCD中,∠ABC+∠ADF=180°,过点A作∠EAF=∠BAD,AE交线段BC于点E,AF交线段CD延长线于点F.若AB:AD=2:3,求△ABE的面积与△ADF的面积之比.

▼优质解答
答案和解析
探究:证明:∵四边形ABCD是矩形,
∴∠ADC=∠BAD=∠B=90°
∴∠ADF=∠B=90°,
∵∠EAF=∠BAD,
∴∠EAB+∠EAD=∠FAD+∠EAD,
∴∠EAB=∠FAD,
∴△ABE∽△ADF;
拓展:∵∠ABC+∠ADC=180°,∠ADC+ADF=180°.
∴∠ABE=∠ADF,
∵∠EAF=∠BAD,
∴∠EAB+∠EAD=∠FAD+∠EAD,
∴∠EAB=∠FAD
∴△ABE∽△ADF.
∴S△ABE:S△ADF=AB2:AD2=4:9.
∴∠ADC=∠BAD=∠B=90°
∴∠ADF=∠B=90°,
∵∠EAF=∠BAD,
∴∠EAB+∠EAD=∠FAD+∠EAD,
∴∠EAB=∠FAD,
∴△ABE∽△ADF;
拓展:∵∠ABC+∠ADC=180°,∠ADC+ADF=180°.
∴∠ABE=∠ADF,
∵∠EAF=∠BAD,
∴∠EAB+∠EAD=∠FAD+∠EAD,
∴∠EAB=∠FAD
∴△ABE∽△ADF.
∴S△ABE:S△ADF=AB2:AD2=4:9.
看了 探究:如图①,在矩形ABCD...的网友还看了以下:
A、B、C、D、E、F为短周期元素,非金属元素A最外层电子数与其周期数相同,B的最外层电子数是其所 2020-04-08 …
一到证明题求解.利用常用永真蕴含公式证明(A→(B→C))∧((C∧D)→E)∧(┓F→(D→┓E 2020-06-17 …
A、B、C、D、E、F六个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小 2020-06-22 …
A、B、C、D、E、F六个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小 2020-07-01 …
英语、成语问题身()志()o,o,b,b,a,m单词:中文:()e,a,l,f单词:中文:()t, 2020-07-24 …
代数元的平方是否是代数元?E是F的扩域,若a属于E,a是F的代数元,试证明a的平方是F的代数元 2020-11-17 …
已知某二叉树的先序遍历序列为:A,B,D,E,G,C,F,H,I,J,中序序列为:D,B,G,E,A 2020-12-05 …
A、B、D、E、F为短周期元素.非金属元素A最外层电子数与其周期数相同,B的最外层电子数是其所在周期 2020-12-07 …
输入任意大小的3个整数,判断其中是否有两个奇数一个偶数.若是则输入YES,不是则输出NO我编的程序哪 2020-12-09 …
复合函数求导问题复合函数求导时,遇到一种函数通过不同形式两两组合可得到不同的结果时,应该如何解决例如 2020-12-13 …