早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知等比数列{an}的前n项和为Sn,且满足2Sn=2n+1+λ(λ∈R).(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足bn=1(2n+1)log4(anan+1),求数列{bn}的前n项和Tn.

题目详情
已知等比数列{an}的前n项和为Sn,且满足2Sn=2n+1+λ(λ∈R).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=
1
(2n+1)log4(anan+1)
,求数列{bn}的前n项和Tn
▼优质解答
答案和解析
(Ⅰ)依题意,当n=1时,2S1=2a1=4+λ,
故当n≥2时,an=Sn-Sn-1=2n-1;
因为数列{an}为等比数列,故a1=1,故
4+λ
2
=1,解得λ=-2,
故数列{an}的通项公式为an=2n-1(n∈N*).
(Ⅱ)依题意,log4(an
a
 
n+1
)=log4(2n-1•2n)=
1
2
(2n-1),
bn=
1
(2n+1)log4(an
a
 
n+1
)
=
2
(2n+1)(2n-1)
=
1
2n-1
-
1
2n+1

故数列{bn}的前n项和Tn=1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
=
2n
2n+1