早教吧作业答案频道 -->其他-->
已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A、C不重合),过点P作PE⊥PB,PE交射线DC于点E,过点E作EF⊥AC,垂足为点F.(1)当点E落在线段CD上时(如图),①求证:PB=PE;
题目详情
已知边长为1的正方形ABCD中, P是对角线AC上的一个动点(与点A、C不重合),过点P作PE⊥PB ,PE交射线DC于点E,过点E作EF⊥AC,垂足为点F.(1)当点E落在线段CD上时(如图),
①求证:PB=PE;
②在点P的运动过程中,PF的长度是否发生变化?若不变,试求出这个不变的值,若变化,试说明理由;
(2)当点E落在线段DC的延长线上时,在备用图上画出符合要求的大致图形,并判断上述(1)中的结论是否仍然成立(只需写出结论,不需要证明);
(3)在点P的运动过程中,△PEC能否为等腰三角形?如果能,试求出AP的长,如果不能,试说明理由.
▼优质解答
答案和解析
(1)①证明:过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.

∵四边形ABCD是正方形,PG⊥BC,PH⊥DC,
∴∠GPC=∠ACB=∠ACD=∠HPC=45°.
∴PG=PH,∠GPH=∠PGB=∠PHE=90°.
∵PE⊥PB即∠BPE=90°,
∴∠BPG=90°-∠GPE=∠EPH.
在△PGB和△PHE中,
.
∴△PGB≌△PHE(ASA),
∴PB=PE.
②连接BD,如图2.

∵四边形ABCD是正方形,∴∠BOP=90°.
∵PE⊥PB即∠BPE=90°,
∴∠PBO=90°-∠BPO=∠EPF.
∵EF⊥PC即∠PFE=90°,
∴∠BOP=∠PFE.
在△BOP和△PFE中,
,
∴△BOP≌△PFE(AAS),
∴BO=PF.
∵四边形ABCD是正方形,
∴OB=OC,∠BOC=90°,
∴BC=
OB.
∵BC=1,∴OB=
,
∴PF=
.
∴点PP在运动过程中,PF的长度不变,值为
.
(2)当点E落在线段DC的延长线上时,符合要求的图形如图3所示.

同理可得:PB=PE,PF=
.
(3)①若点E在线段DC上,如图1.

∵∠BPE=∠BCE=90°,∴∠PBC+∠PEC=180°.
∵∠PBC<90°,∴∠PEC>90°.
若△PEC为等腰三角形,则EP=EC.
∴∠EPC=∠ECP=45°,
∴∠PEC=90°,与∠PEC>90°矛盾,P
∴当点E在线段DC上时,△PEC不可能是等腰三角形.
②若点E在线段DC的延长线上,如图4.

若△PEC是等腰三角形,
∵∠PCE=135°,
∴CP=CE,
∴∠CPE=∠CEP=22.5°.
∴∠APB=180°-90°-22.5°=67.5°.
∵∠PRC=90°+∠PBR=90°+∠CER,
∴∠PBR=∠CER=22.5°,
∴∠ABP=67.5°,
∴∠ABP=∠APB.
∴AP=AB=1.
∴APAP的长为1.

∵四边形ABCD是正方形,PG⊥BC,PH⊥DC,
∴∠GPC=∠ACB=∠ACD=∠HPC=45°.
∴PG=PH,∠GPH=∠PGB=∠PHE=90°.
∵PE⊥PB即∠BPE=90°,
∴∠BPG=90°-∠GPE=∠EPH.
在△PGB和△PHE中,
|
∴△PGB≌△PHE(ASA),
∴PB=PE.
②连接BD,如图2.

∵四边形ABCD是正方形,∴∠BOP=90°.
∵PE⊥PB即∠BPE=90°,
∴∠PBO=90°-∠BPO=∠EPF.
∵EF⊥PC即∠PFE=90°,
∴∠BOP=∠PFE.
在△BOP和△PFE中,
|
∴△BOP≌△PFE(AAS),
∴BO=PF.
∵四边形ABCD是正方形,
∴OB=OC,∠BOC=90°,
∴BC=
| 2 |
∵BC=1,∴OB=
| ||
| 2 |
∴PF=
| ||
| 2 |
∴点PP在运动过程中,PF的长度不变,值为
| ||
| 2 |
(2)当点E落在线段DC的延长线上时,符合要求的图形如图3所示.

同理可得:PB=PE,PF=
| ||
| 2 |
(3)①若点E在线段DC上,如图1.

∵∠BPE=∠BCE=90°,∴∠PBC+∠PEC=180°.
∵∠PBC<90°,∴∠PEC>90°.
若△PEC为等腰三角形,则EP=EC.
∴∠EPC=∠ECP=45°,
∴∠PEC=90°,与∠PEC>90°矛盾,P
∴当点E在线段DC上时,△PEC不可能是等腰三角形.
②若点E在线段DC的延长线上,如图4.

若△PEC是等腰三角形,
∵∠PCE=135°,
∴CP=CE,
∴∠CPE=∠CEP=22.5°.
∴∠APB=180°-90°-22.5°=67.5°.
∵∠PRC=90°+∠PBR=90°+∠CER,
∴∠PBR=∠CER=22.5°,
∴∠ABP=67.5°,
∴∠ABP=∠APB.
∴AP=AB=1.
∴APAP的长为1.
看了 已知边长为1的正方形ABCD...的网友还看了以下:
如图,点A、B为射线OM上两点,且OA=20cm,AB=60cm,点P以1cm/秒的速度从点O出发 2020-05-24 …
政策性银行的基本属性包括( )。 A.由政府创立、参股或保证 B.为政府赚取利润 C.配合宏 2020-05-30 …
AC为圆O的直径,B为半圆上一点,连接AB,BC,D为AC上一点,作DE=DB,交射线BC于点E, 2020-06-04 …
实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1) 2020-07-04 …
如图,AO⊥OM,OA=8,点B为射线OM上的一个动点,分别以OB,AB为直角边,B为直角顶点,在 2020-07-24 …
如图,点A、B为射线OM上两点,且OA=20cm,AB=60cm,点P以1cm/秒的速度从点O出发 2020-07-24 …
已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB= 2020-07-24 …
图中P为放在匀强电场中的天然放射源,其放出的射线在电场的作用下分成a、b、c三束,以下判断正确的是 2020-07-25 …
如图,AO⊥OM,OA=4,点B为射线OM上的一个动点,分别以OB,AB为直角边,B为直角顶点,在 2020-07-30 …
下侧为蟾蜍屈肌反射的反射弧模式图,a、b为神经纤维上的实验位点,c为突触间隙。要验证某药物能通过阻断 2020-11-05 …