早教吧作业答案频道 -->数学-->
函数问题一、简述函数的四条简单性质,二、求函数自然定义域中注意的问题.三、什么是初等函数.基本初等函数有哪些?四、什么是无穷大量?什么是无穷小量?无穷大与无穷小的关系是什么?五
题目详情
函数问题
一、简述函数的四条简单性质,
二、求函数自然定义域中注意的问题.
三、什么是初等函数.基本初等函数有哪些?
四、什么是无穷大量?什么是无穷小量?无穷大与无穷小的关系是什么?
五、求函数极限的方法有哪些?
一、简述函数的四条简单性质,
二、求函数自然定义域中注意的问题.
三、什么是初等函数.基本初等函数有哪些?
四、什么是无穷大量?什么是无穷小量?无穷大与无穷小的关系是什么?
五、求函数极限的方法有哪些?
▼优质解答
答案和解析
一、①有界性②单调性③奇偶性④周期性
二、(1)函数的定义域应写成集合或者区间的形式
(2)函数的定义域是非空的
(3)分段函数是一个函数故分段函数的定义域是各段自变量的范围的并集
(4)由几个函数经过四则运算所得的新函数的定义域是各个函数的定义域的交集
(5) 已知函数f(x)定义域求f【g(x)】的定义域
(6) 已知f【g(x)】的定义域求f(x)定义域
(7) 函数的定义域与函数有意义是有区别的
(8)实际问题中函数的定义域应具有实际意义
三、初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生、并且能用一个解析式表示的函数.
以下六类函数统称为基本初等函数:
(1)常值函数(也称常数函数) y =c(其中c 为常数)
(2)幂函数 y =x a(其中a 为实常数)
(3)指数函数 y =a x(a>0,a≠1)
(4)对数函数 y =logax(a>0,a≠1)
(5)三角函数:正弦函数 y =sinx 余弦函数 y =cosx 正切函数 y =tanx(也记成y =tgx)
余切函数 y =cotx (也记成y =ctgx) 正割函数 y =secx 余割函数 y =cscx
(6)反三角函数:反正弦函数 y =arcsinx 反余弦函数 y =arccosx
反正切函数 y =arctanx 反余切函数 y =arccotx
四、当自变量x无限接近x0(或|x|无限增大)时,函数值|f(x)|无限增大,即f(x)=∞(或f(x)=∞),则称f(x)为x→x0(或x→∞)时的无穷大量 .例如f(x)=是当x→1时的无穷大量,f(n)=n2是当n→∞时的无穷大量.无穷大量的倒数是无穷小量.应该特别注意的是,无论多么大的数都不是无穷大量.
五、(1)利用定义求极限
(2)利用函数的连续性求极限
(3)利用两个重要极限求极限
(4)利用四则运算法则求极限
(5)利用迫敛性求极限
(6)利用归结原则求极限
(7)利用等价无穷小量代换求极限
(8)利用洛比达法则求极限
(9) 利用泰勒公式求极限
(10)用导数的定义求极限
(11)利用定积分求极限
以上问题每个老师的叫法也不不一样,可做参考.
二、(1)函数的定义域应写成集合或者区间的形式
(2)函数的定义域是非空的
(3)分段函数是一个函数故分段函数的定义域是各段自变量的范围的并集
(4)由几个函数经过四则运算所得的新函数的定义域是各个函数的定义域的交集
(5) 已知函数f(x)定义域求f【g(x)】的定义域
(6) 已知f【g(x)】的定义域求f(x)定义域
(7) 函数的定义域与函数有意义是有区别的
(8)实际问题中函数的定义域应具有实际意义
三、初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生、并且能用一个解析式表示的函数.
以下六类函数统称为基本初等函数:
(1)常值函数(也称常数函数) y =c(其中c 为常数)
(2)幂函数 y =x a(其中a 为实常数)
(3)指数函数 y =a x(a>0,a≠1)
(4)对数函数 y =logax(a>0,a≠1)
(5)三角函数:正弦函数 y =sinx 余弦函数 y =cosx 正切函数 y =tanx(也记成y =tgx)
余切函数 y =cotx (也记成y =ctgx) 正割函数 y =secx 余割函数 y =cscx
(6)反三角函数:反正弦函数 y =arcsinx 反余弦函数 y =arccosx
反正切函数 y =arctanx 反余切函数 y =arccotx
四、当自变量x无限接近x0(或|x|无限增大)时,函数值|f(x)|无限增大,即f(x)=∞(或f(x)=∞),则称f(x)为x→x0(或x→∞)时的无穷大量 .例如f(x)=是当x→1时的无穷大量,f(n)=n2是当n→∞时的无穷大量.无穷大量的倒数是无穷小量.应该特别注意的是,无论多么大的数都不是无穷大量.
五、(1)利用定义求极限
(2)利用函数的连续性求极限
(3)利用两个重要极限求极限
(4)利用四则运算法则求极限
(5)利用迫敛性求极限
(6)利用归结原则求极限
(7)利用等价无穷小量代换求极限
(8)利用洛比达法则求极限
(9) 利用泰勒公式求极限
(10)用导数的定义求极限
(11)利用定积分求极限
以上问题每个老师的叫法也不不一样,可做参考.
看了 函数问题一、简述函数的四条简...的网友还看了以下:
3个连续自然数(不为0)的和一定是()A奇数B偶数C3的倍数下列说法中不正确的是()A是6的倍数的 2020-04-09 …
紧急!求数学初一和初二的所有定义和定理.求数学初一和初二的所有定义和定理.写清楚点.把定理和定义分 2020-05-13 …
微积分——求积分求积分咋求啊!要求∫f(x)dx,我就会f(a)dx+f(a+dx)dx+f(a+ 2020-05-14 …
怎么用极限严格定义求数列n\(a^n)的极限.求证 数列 n\(a^n) 的极限为0 .我无法给出 2020-05-16 …
求教数学判断题 (1)1是所有非零自然数的因数.(2)9是奇数,也是合数.(3)两个素数的积一定是 2020-05-17 …
1.设abcd是四个整数,且使m=(ab+cd)^2-1/4(a^2+b^2-c^2-d^2)^2 2020-07-09 …
若ab>0,则下列说法中,正确的是()A.两个有理数的乘积一定大于每一个因数.B.若一个数的绝对值 2020-07-13 …
"两个奇数之和一定是偶数"的否命题与逆命题产生的悖论,求解答.原命题:两个奇数之和一定是偶数p:两 2020-07-24 …
(1)将1.2...2004这2004个数随意排成一行,得到一个数N,求证:N一定是合数;(2)若 2020-07-31 …
1将1,2,…,2004这些数排成一行,得到数N.求证:N一定是合数.2若n是大于2的正整数,求证 2020-07-31 …