早教吧作业答案频道 -->数学-->
函数问题一、简述函数的四条简单性质,二、求函数自然定义域中注意的问题.三、什么是初等函数.基本初等函数有哪些?四、什么是无穷大量?什么是无穷小量?无穷大与无穷小的关系是什么?五
题目详情
函数问题
一、简述函数的四条简单性质,
二、求函数自然定义域中注意的问题.
三、什么是初等函数.基本初等函数有哪些?
四、什么是无穷大量?什么是无穷小量?无穷大与无穷小的关系是什么?
五、求函数极限的方法有哪些?
一、简述函数的四条简单性质,
二、求函数自然定义域中注意的问题.
三、什么是初等函数.基本初等函数有哪些?
四、什么是无穷大量?什么是无穷小量?无穷大与无穷小的关系是什么?
五、求函数极限的方法有哪些?
▼优质解答
答案和解析
一、①有界性②单调性③奇偶性④周期性
二、(1)函数的定义域应写成集合或者区间的形式
(2)函数的定义域是非空的
(3)分段函数是一个函数故分段函数的定义域是各段自变量的范围的并集
(4)由几个函数经过四则运算所得的新函数的定义域是各个函数的定义域的交集
(5) 已知函数f(x)定义域求f【g(x)】的定义域
(6) 已知f【g(x)】的定义域求f(x)定义域
(7) 函数的定义域与函数有意义是有区别的
(8)实际问题中函数的定义域应具有实际意义
三、初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生、并且能用一个解析式表示的函数.
以下六类函数统称为基本初等函数:
(1)常值函数(也称常数函数) y =c(其中c 为常数)
(2)幂函数 y =x a(其中a 为实常数)
(3)指数函数 y =a x(a>0,a≠1)
(4)对数函数 y =logax(a>0,a≠1)
(5)三角函数:正弦函数 y =sinx 余弦函数 y =cosx 正切函数 y =tanx(也记成y =tgx)
余切函数 y =cotx (也记成y =ctgx) 正割函数 y =secx 余割函数 y =cscx
(6)反三角函数:反正弦函数 y =arcsinx 反余弦函数 y =arccosx
反正切函数 y =arctanx 反余切函数 y =arccotx
四、当自变量x无限接近x0(或|x|无限增大)时,函数值|f(x)|无限增大,即f(x)=∞(或f(x)=∞),则称f(x)为x→x0(或x→∞)时的无穷大量 .例如f(x)=是当x→1时的无穷大量,f(n)=n2是当n→∞时的无穷大量.无穷大量的倒数是无穷小量.应该特别注意的是,无论多么大的数都不是无穷大量.
五、(1)利用定义求极限
(2)利用函数的连续性求极限
(3)利用两个重要极限求极限
(4)利用四则运算法则求极限
(5)利用迫敛性求极限
(6)利用归结原则求极限
(7)利用等价无穷小量代换求极限
(8)利用洛比达法则求极限
(9) 利用泰勒公式求极限
(10)用导数的定义求极限
(11)利用定积分求极限
以上问题每个老师的叫法也不不一样,可做参考.
二、(1)函数的定义域应写成集合或者区间的形式
(2)函数的定义域是非空的
(3)分段函数是一个函数故分段函数的定义域是各段自变量的范围的并集
(4)由几个函数经过四则运算所得的新函数的定义域是各个函数的定义域的交集
(5) 已知函数f(x)定义域求f【g(x)】的定义域
(6) 已知f【g(x)】的定义域求f(x)定义域
(7) 函数的定义域与函数有意义是有区别的
(8)实际问题中函数的定义域应具有实际意义
三、初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生、并且能用一个解析式表示的函数.
以下六类函数统称为基本初等函数:
(1)常值函数(也称常数函数) y =c(其中c 为常数)
(2)幂函数 y =x a(其中a 为实常数)
(3)指数函数 y =a x(a>0,a≠1)
(4)对数函数 y =logax(a>0,a≠1)
(5)三角函数:正弦函数 y =sinx 余弦函数 y =cosx 正切函数 y =tanx(也记成y =tgx)
余切函数 y =cotx (也记成y =ctgx) 正割函数 y =secx 余割函数 y =cscx
(6)反三角函数:反正弦函数 y =arcsinx 反余弦函数 y =arccosx
反正切函数 y =arctanx 反余切函数 y =arccotx
四、当自变量x无限接近x0(或|x|无限增大)时,函数值|f(x)|无限增大,即f(x)=∞(或f(x)=∞),则称f(x)为x→x0(或x→∞)时的无穷大量 .例如f(x)=是当x→1时的无穷大量,f(n)=n2是当n→∞时的无穷大量.无穷大量的倒数是无穷小量.应该特别注意的是,无论多么大的数都不是无穷大量.
五、(1)利用定义求极限
(2)利用函数的连续性求极限
(3)利用两个重要极限求极限
(4)利用四则运算法则求极限
(5)利用迫敛性求极限
(6)利用归结原则求极限
(7)利用等价无穷小量代换求极限
(8)利用洛比达法则求极限
(9) 利用泰勒公式求极限
(10)用导数的定义求极限
(11)利用定积分求极限
以上问题每个老师的叫法也不不一样,可做参考.
看了 函数问题一、简述函数的四条简...的网友还看了以下:
上述材料反映了哲学上的什么问题?惠施的话属于什么观点 2020-04-25 …
哲学作为世界观,回答关于世界的什么问题 2020-04-25 …
俄国1861农奴改革和美国南北战争都是要解决资本主义发展的什么问题?B劳动力问题C 2020-05-13 …
世界人口增长情况示意图.(1)你认为上面的示意图主要反映了世界人口增长的什么问题?(2)你对这个问 2020-05-14 …
“汉代宰相是首长制”反映汉初存在的什么问题?为了解决这一问题,汉武帝曾经采取什么措施? 2020-05-16 …
图一反映了西汉初年政治体系存在的什么问题,西汉政府是怎样解决这一问题的? 2020-05-22 …
荷叶是鱼儿的雨伞,荷叶是蜻蜓的什么?荷叶是鱼儿的雨伞,荷叶是蜻蜓的什么?问题答案不能太离谱哟,毕竟 2020-06-27 …
全日制义务教育科学(3-6年级)课程标准(实验稿)在什么背景下颁布的?改进了以前大纲(课标)的什么 2020-07-03 …
《清平乐六盘山》最后一句是用的什么问句?“今日长缨在手,何时缚住苍龙?”用的是反问还是设问还是普通 2020-07-06 …
阅读漫画《网络时代的猫咪》,回答问题。(1)这幅漫画反映了网络交往中存在的什么问题?(2)假如你也 2020-07-11 …