早教吧作业答案频道 -->其他-->
如图,△ABC是等边三角形,点D是线段BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交AB、AC于点F、G,连接BE.(1)若△ABC的面积是1,则△A
题目详情
如图,△ABC是等边三角形,点D是线段BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交AB、AC于点F、G,连接BE.(1)若△ABC的面积是1,则△ADE的最小面积为
| 3 |
| 4 |
| 3 |
| 4 |
(2)求证:△AEB≌ADC;
(3)探究四边形BCGE是怎样特殊的四边形?并说明理由.
▼优质解答
答案和解析
证明:(1)由题意得当AD⊥BC时,AD最小;
此时AD:AB=
:2
∵△ABC的面积是1,
∴△ADE的最小面积为
;
(2)∵△ABC和△ADE都是等边三角形,
∴AE=AD,AB=AC,∠EAD=∠BAC=60°.(1分)
又∵∠EAB=∠EAD-∠BAD,∠DAC=∠BAC-∠BAD,
∴∠EAB=∠DAC,
∴△AEB≌△ADC.(3分)
(3)方法一:由①得△AEB≌△ADC,
∴∠ABE=∠C=60°.
又∵∠BAC=∠C=60°,
∴∠ABE=∠BAC,
∴EB∥GC.(5分)
又∵EG∥BC,
∴四边形BCGE是平行四边形.(6分)
方法二:证出△AEG≌△ADB,得EG=AB=BC.(5分)
由①得△AEB≌△ADC.得BE=CG.
∴四边形BCGE是平行四边形.(6分)
此时AD:AB=
| 3 |
∵△ABC的面积是1,
∴△ADE的最小面积为
| 3 |
| 4 |
(2)∵△ABC和△ADE都是等边三角形,
∴AE=AD,AB=AC,∠EAD=∠BAC=60°.(1分)
又∵∠EAB=∠EAD-∠BAD,∠DAC=∠BAC-∠BAD,
∴∠EAB=∠DAC,
∴△AEB≌△ADC.(3分)
(3)方法一:由①得△AEB≌△ADC,
∴∠ABE=∠C=60°.
又∵∠BAC=∠C=60°,
∴∠ABE=∠BAC,
∴EB∥GC.(5分)
又∵EG∥BC,
∴四边形BCGE是平行四边形.(6分)
方法二:证出△AEG≌△ADB,得EG=AB=BC.(5分)
由①得△AEB≌△ADC.得BE=CG.
∴四边形BCGE是平行四边形.(6分)
看了 如图,△ABC是等边三角形,...的网友还看了以下:
已知A、B、C、D、E、F6种物质的转化关系如下:(1)A+B→C+H2O(2)C+KOH→D↓( 2020-06-05 …
main(){unionEXAMPLE{struct{intx,y;}in;inta,b;}e;e 2020-06-12 …
用以下英文宇母填在上a,a,a,a,a,a,b,e,e,d,e,e,e,e,e,e,f,g,g用以 2020-06-24 …
英语单词填空1.时间状语:d-r-n-2.场所:b-s-s-o-f-r--e-a-t-e-t3.教 2020-07-14 …
五元一次方程的解法0.01349/[e+0.6842(1-e)]=a0.8638/[e+0.565 2020-07-16 …
已知向量a≠e,|e|=1,满足:任意t∈R.已知向量a不等于e,|e|=1,对任意t属于R,恒有 2020-07-25 …
在五环图案内,分别填写五个数a,b,c,d,e,如图(1),其中a,b,c是三个连续偶数(a<b< 2020-08-02 …
三元一次方程组a*x+b*y+c*z+d=0,e*x+f*y+g*z+h=0,i*x+j*y+k* 2020-08-03 …
1.设非零向量a,b,c,d满足向量d=(a·b)c-(a·c)b,求a与b的位置关系。2.已知向量 2020-11-02 …
“我们可以得到A和B分别与C、D、E之间的关系”这句话用英语怎么表达“我们可以得到A和B分别与C、D 2020-12-25 …